
Software Visualization

Presented by Sam Davis

2 3 4

More than Just UML!

• UML is about static structure of software

• In terms of abstractions like
– Procedures

– Objects

– Files

– Packages

• But…

5

Software is Dynamic!

• Abstractions are for developers

• Users care about behaviour

• Visualize behaviour of software at run time
– Find errors

– Find performance bottlenecks

What can we visualize?

7

Test Results

• Hundreds, maybe thousands of tests

• For each test:
– Purpose

– Result (pass or fail)
• Could be per-configuration or per-version

– Relevant parts of the code

8

Detailed Execution Data

• Could be for many executions

• Dynamic events as opposed to summary
data

9

Summary Data: Examples

• Total running time

• Number of times a method was called

• Amount of time CPU was idle

10

Dynamic Events: Examples

• Memory allocation
• System calls
• Cache misses
• Page faults
• Pipeline flushes
• Process scheduling
• Completion of disk reads or writes
• Message receipt
• Application phases

11

Really Detailed Execution Data

• Logging virtual machines can capture everything
– Enough data to replay program execution and

recreate the entire machine state at any point in time

– Allows “time-traveling”

– For long running systems, data could span months

• Uses:
– Debugging

– Understanding attacks

Strata_Various: Multi_Layer
Visualization of Dynamics in
Software System Behavior

Doug Kimelman, Bryan Rosenburg, Tova
Roth

Proc. Fifth IEEE Conf. Visualization ’94, IEEE
Computer Society Press, Los Alamitos, Calif.,

1994, pp. 172–178.

13

Strata_Various

• Trace-driven program visualization

• Trace: sequence of <time, event> pairs

• Events captured from all layers:
– Hardware

– Operating System

– Application

• Replay execution history

• Coordinate navigation of event views
14

Strata_Various: Main Argument

• Debugging and tuning requires
simultaneously analyzing behaviour at
multiple layers of the system

15 16

17 18

Strata_Various: Critique

• Examples demonstrate usefulness
• Fundamentally, a good idea

– Increasing importance as multi-core machines
become standard

• Many windows
– Titles not meaningful
– Virtual reality cop-out

• Dubious claim that tracing does not alter
behaviour

19

SeeSoft

• Zoomed out view of source code
– Lines of code displayed as thin horizontal

lines

– Preserve indentation, length

– Can colour lines according to data

• Link with readable view of code

• Allows tying data to source code

Stephen G. Eick, Joseph L. Steffen and Eric E. Sumner, Jr. “SeeSoft – A Tool
for Visualizing Line-Oriented Software Statistics.” IEEE Transactions on
Software Engineering, 18(11):957-968, November 1992. 20

SeeSoft Example

Visually Encoding
Program Test Information to Find

Faults in Software
(Tarantula)

James Eagan, Mary Jen Harrold, James A.
Jones, and John Stasko, Proc. InfoVis 2001

pp. 33-36.

22

Tarantula

• Extends SeeSoft idea

• Defines colour mapping for LOC based on
test results

• Goal: use test results to identify broken
code

23

Tarantula

• Input:
– For each test:

• Test number

• Result (pass or fail)

• Test coverage (list of line numbers)

24

Tarantula: Discrete Colour Mapping

• Based on user tests

• Black background

• Colour each line
– Red if executed by failed tests

– Green if executed by passed tests

– Yellow if executed by both

25

Tarantula: Continuous Colour
Mapping

• Extend discrete colour mapping by
– Interpolating between red and green

– Adjusting brightness according to number of
tests

• Possibilities:
– Number of passed or failed tests

– Ratio of passed to failed tests

– Ratio of % passed to % failed

26

Tarantula: Continuous Colour
Mapping

• For each line L
– Let p and f be the percentages of passed and

failed tests that executed L

– If p = f = 0, colour L grey

– Else, colour L according to
• Hue: p / (p + f), where 0 is red and 1 is green

• Brightness: max(p, f)

27 28

29

Tarantula: Critique

• Visualizing test results could be useful,
this is a first step

• Future work: does colouring help to find
broken code?

• Colouring: simple idea made complex
• Tests identified only by number

– Better: name tests
– Better still: can we visualize the meaning of

tests?

Visualization of Program-
Execution Data for Deployed

Software
(Gammatella)

Alessandro Orso, James Jones, and Mary
Jean Harrold.

Proc. of the ACM Symp. on Software
Visualization, San Diego, CA, June 2003,

pages 67--76.

31

Gammatella

• Collection and storage of program-
execution data

• Visualization of data about many
executions

32

Gammatella: Executions

• Code coverage and profiling data

• Execution properties
– OS

– Java version

– Etc.

• Filters
– Boolean predicate logic

• Summarizers

33

Gammatella: Coloured, Tri-Level
Representation

• System level
– Treemap of package/class hierarchy

• File level:
– SeeSoft-like view of code

• Statement level:
– Source code (coloured text)

• Colours based on exceptions
– Other colourings possible, e.g. profiling data

34 35

One Level Treemap

• Layout algorithm for treemap of depth 1
– Preserves relative placement of colours

36

37

Gammatella: Critique

• Complete system – not just a visualization

• Effectively links code to structure

• Trial usage discovered useful but high-
level information
– Mainly relied on system view

– Would be nice to see examples using file and
statement level views

Visualizing Application Behavior
on Superscalar Processors

Chris Stolte, Robert Bosch, Pat
Hanrahan, and Mendel Rosenblum

Proc. InfoVis 1999

39

Superscalar Processors: Quick
Overview

• Pipeline

• Multiple Functional Units
– Instruction-Level Parallelism (ILP)

• Instruction Reordering

• Branch Prediction and Speculation

• Reorder Buffer
– Instructions wait to graduate (exit pipeline)

40

41 42 43 44

45 46 47 48

Critique

• Most code doesn’t need this level of
optimization, but
– The visualization is effective, and would be

useful for code that does
– May reduce the expertise needed to perform

low level optimzation

• Might be effective as a teaching tool
• Bad color scheme: black/purple/brown
• Does it scale with processor complexity?

49

Papers

• D. Kimelman, B. Rosenburg, and T. Roth,
“Strata-Various: Multi-Layer Visualization of
Dynamics in Software System Behavior,” Proc.
Fifth IEEE Conf. Visualization ’94, IEEE
Computer Society Press, Los Alamitos, Calif.,
1994, pp. 172–178.

• James Eagan, Mary Jen Harrold, James A.
Jones, and John Stasko, "Visually Encoding
Program Test Information to Find Faults in
Software." Proc. InfoVis 2001 pp. 33-36.

50

Papers

• Alessandro Orso, James Jones, and Mary Jean
Harrold. "Visualization of Program-Execution
Data for Deployed Software." Proc. of the ACM
Symp. on Software Visualization, San Diego, CA,
June 2003, pages 67--76.

• Chris Stolte, Robert Bosch, Pat Hanrahan, and
Mendel Rosenblum, "Visualizing Application
Behavior on Superscalar Processors." Proc.
InfoVis 1999

