

<section-header><figure><figure><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></figure></figure></section-header>	<section-header><image/><image/><image/><image/><image/><image/><image/><image/></section-header>	Radviz like visualization $ \underbrace{ \Phi_{0} \Phi_{$	Playing with parameters $ \underbrace{\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
More?	or Scagnostics 3	 Tukey's Idea of Scagnostics Take measures from scatterplot matrix Construct scatterplot matrix (SPLOM) of these measures Look for data trends in this SPLOM 	Scagnostic SPLOM Is like: • Is visualization of a set of pointers • Set of pointers also can be constructed • Set of pointers to pointers also can be constructed • To be able to locate unusual clusters of measures that characterize unusual clusters of raw scatterplots
 Problems with constructing Scagnostic SPLOM Some of Tukeys' measures presume underlying continuous empirical or theoretical probability function. It can be a problem for other types of data. The computational complexity of some of the Tukey measures is O(n_). 	Solution* On to presume a connected plane of support On to presume a connected plane of support Can be metric over discrete spaces Base the measures on subsets of the Delaunay triangulation Gives O(nlog(n)) in the number of points Use adaptive hexagon binning before computing to further reduce the dependence on <i>n</i> . Remove outlying points from spanning tree	Properties of geometric graph for measures • Undirected (edges consist of unordered pairs) • Simple (no edge pairs a vertex with itself) • Planar (has embedding in R2 with no crossed edges) • Straight (embedded eges are straight line segments) • Finite (V and E are finite sets)	Graphs that fit these demands: • Convex Hull • Alpha Hull • Minimal Spanning Tree
Measures: . Length of en edge . Longth of a graph . Look for a closed path (boundary of a polygon) . Perimeter of a polygon . Diameter of a graph	Five interesting aspects of scattered points: - Outling - Outlying - Stage - Connex - Connex - Straight - Straight - Monotonic - Straight - Glumpy - Straight - Straight	Classifying scatterplots	<section-header></section-header>

Questions?	Literature Covered papers: Graph-Theoretic Scagnostics L. Wilkinson, R. Grossman, A. Anand. Proc. InfoVis.2005. Dimensional Anchors: a Graphic Primitive for Multidimensional Multivariate Information Visualizations, Patrick Hoffman et al., Proc. Workshop on New Paradigms in Information Visualization and Manipulation, Nis99, pp. 9- 16. Charting a manifold Matthew Brand, NIPS 2003. Think Globally, Fill Locality: Unsupervised Learning of Nonlinear Manifolds. Hork CIS-02-18, 2002 Other appers: A. Global Geometric Framework for Nonlinear Dimensionality Reduction, Joshua B. Tenenbaum, Vin de Silva, John C. Langford, SCIENCE VOL 290 2319-2323 (2000)
	65 66