
Information Visualization: Glyphs

CPSC 533 Topic Presentation Clarence Chan Nov. 21, 2006

Presentation Outline

- Glyphs: Definition
- Basics Of Encodings
- Glyph Discernability
- Placement As Encoding

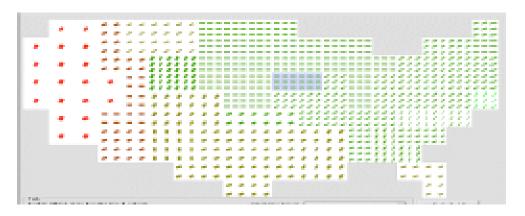
- Informally, what is a glyph?
 - A "thing"
 - A marker
- In some circles, is seen as a linguistic construct of sorts
 - But what does it represent?
 - What is its meaning?

- InfoViz literature: we see that glyphs represent data
 - But how?
- "Thing" or "marker" implies a discrete nature
- Also referred to as "icons" (Ward)
 - ... Why?

- What aspects of the data are expressed in a glyph?
 - Uninteresting unless non-trivial set of attributes
 - Multivariate data
- Thus, it encodes more than one dimension by its very nature
- How does it do it?
 - A "thing" that encodes "multiple attributes"
 - Is an entire viz system a glyph?
 - Do you really see it as a "thing"?

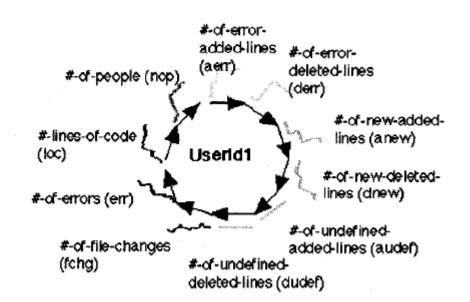
- Clearly we're getting into fuzzy territory
 - (Unclear if this is a problem in the community)
 - Definition problem arose as I looked through papers
- So let's adapt definition from Ward ...

- A glyph is a single visual perceptual entity whose existence encodes a non-trivial number of dimensions of a given datapoint or set of datapoints
 - (note italics)

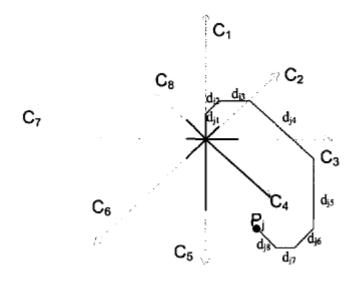

- A glyph is a single visual perceptual entity whose existence encodes a non-trivial number of dimensions of a given datapoint or set of datapoints
 - Remember, much like "icons" ...
 - Glyphs abstract, encapsulate, yet exist as "one"
 - Does not discount aggregation

Presentation Outline

- Glyphs: Definition
- Basics Of Encodings
- Glyph Discernability
- Placement As Encoding


- So given our definition, what can we encode?
- How can we encode it?
- Some examples

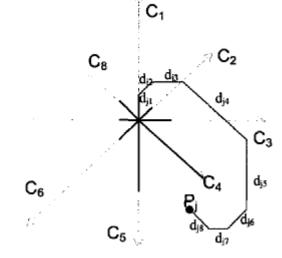
- Data: n-dimensional, captured in discrete format
- Most familiar case: discretize the "continuous", aggregate
- 🔹 i.e. Map data
- Individual glyphs aggregate data of several dimensions over a region


(Yost & North, 2001)

- More obscure example: Software visualization
- TimeWheel: each item on the wheel is a trend graph depicting change over time
- N dimensions, each aggregated over time
- Abstracts away individual data points

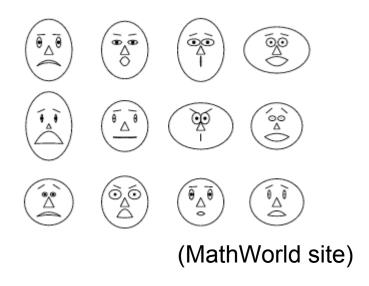
(Chua & Eick, 1997)

- Per-datapoint encodings
- Encode each datapoint directly as a glyph
- If the data set is big though, we like to see them in aggregate ..
- Star Coordinates



(Kandogan, 2001)

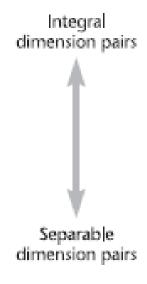
- Star Coordinates: much like conventional Cartesian systems
- There are n "arms" that act as axes in the SC space
- Location of glyph on 2-D SC space is simply vector sum of each arm for that databaset


 C_7

- Ambiguity?
- (more later)

(Kandogan, 2001)

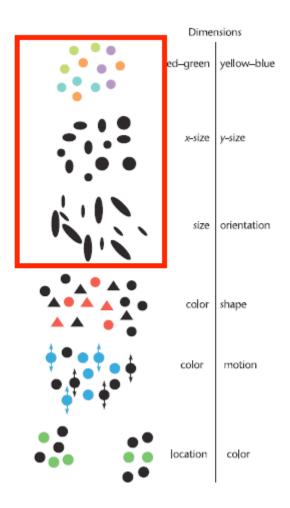
- Another per-datapoint encoding:
- Chernoff faces
- Different attributes of faces represent diff dimensions
- Notion of icons, human interpretability



Presentation Outline

- Glyphs: Definition
- Basics Of Encodings
- Glyph Discernability
- Placement As Encoding

- How to make use of our visual params?
- The standard dimensional encodings
 - Space, shape, orientation
 - Color, luminance
 - Location
- It depends on the task though
 - What do we want to do with glyphs?
 - Compare within dimensions? Across dimensions?
 - Within/across datapoints / datasets?


- Intra-glyph discernability
 - Within a glyph, compare and correlate dimensions
 - Ability to isolate a single dimension for analysis
 - Separable vs. integral visual parameters
 - Many of the standard ideas apply


```
yellow-blue
        red-green
                    black-white
        red-areen
      shape height
                    shape width
            shape
                    size
             color
                    size
direction of motion
                    shape
             color
                    shape
                    direction of motion
             color
       x,y position
                    size, shape, or color
```

(Ware, 2004)

- Intra-glyph discernability
- Integral pairs are very hard to separate out
- Raises the question:
- Is it worth it to overload?
- Can we re-use dimensions?

- Glyphs have very particular nature in this regard
- Compare and contrast with "small multiples"
- Yost paper:
 - Compare overloaded encodings to multiple view encodings

Tasks + views

Figure 1. Integrated, 1 view. Data attributes mapped to color, size, density, and orientation.

Figure 2. Dual, 2 views. Color and size used in both.

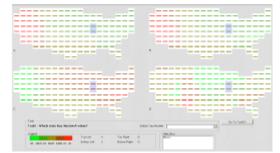
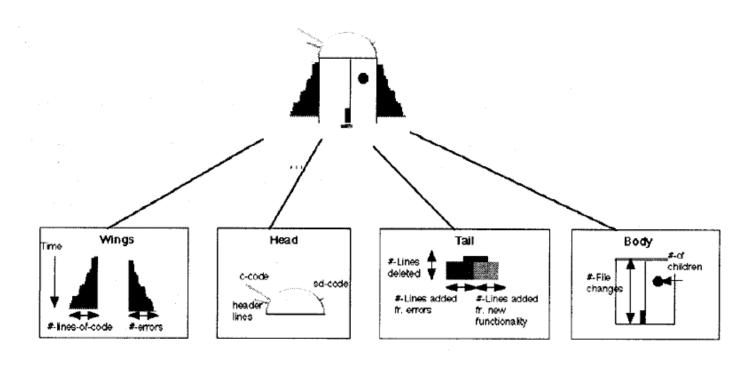
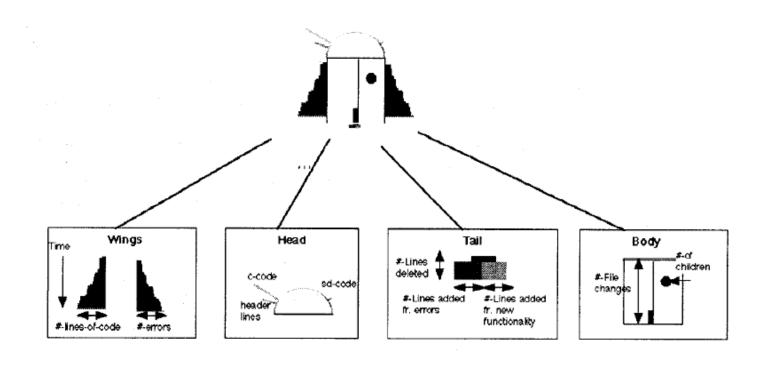



Figure 3. Multiple, 4 views. Color used in all four.

	Most important attribute, Best visual encoding	Less important attribute, Not best visual encoding
Detect:One attribute	Which state has the lowest A value?	Which state has the highest D value?
Detect: Two attributes	Which state has the medium low A value and the low B value?	Which state has the medium low A value and the medium C value?
Trend: One attribute	What's the trend from West to East in terms of A value?	What's the trend from North to South in terms of D value?
Trend: Two attributes	What's the relationship between A and B?	What's the relationship between A and C?

- Best practice appears to be:
 - Re-use and recycle!
 - Overloaded glyphs = integral dimension problem
 - The encoding of the glyph itself takes precedence
 - Relative judgements:
 - # views doesn't matter, but choice of encoding does
 - # views still has effect on encoding choice though:
 - Don't pick an integral one!


- In re-using dimensions:
 - Allows for easier comparison and visual separation
 - However, may need more real estate
- But where do we draw the line?
 - Is it really a single perceptual unit anymore?

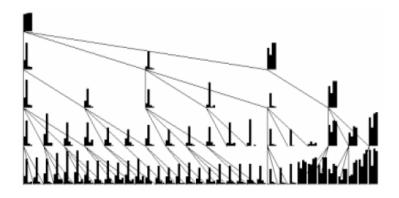
(Chuah & Eick, 1997)

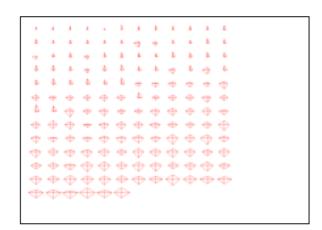
CodeBug:

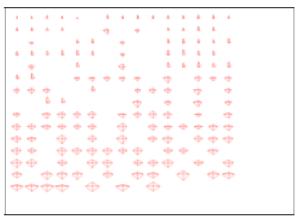
- Wings represent lines of code, # errors
- Other information: # file changes, inheritance level ...
- Shape and size re-used for many dimensions
- But is it as easy to correlate dimensions anymore?

(Chuah & Eick, 1997)

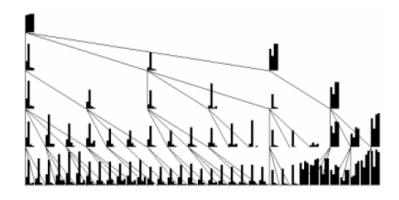
- Inter-glyph discernability: compare single dimension across multiple glyphs
- More standard principles for relative judgements:
 - Straight lines, cardinal directions, discrete colors
 - Minimize interference from integral dimensions
- Star Coordinates:
 - Standard encoding for every dimension, flexible
 - Even lets you see correlations to some degree
 - Can even let you see correlations across multiple glyphs
 - (demo)

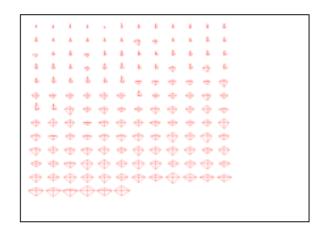

Presentation Outline

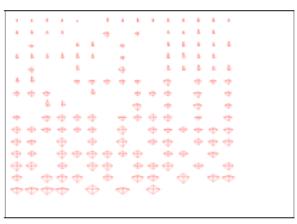

- Glyphs: Definition
- Basics Of Encodings
- Glyph Discernability
- Placement As Encoding


- Notice that it uses location and placement as key component of encoding
- There are many ways to do location (Kandogan)

- Data-driven placement
 - Direct mapping from data to on-screen location
 - Can be raw (star coordinates) or derived (MDS, PCA)
 - Raw = direct, exact, Derived = fuzzy semantics
- Structure-driven placement
 - Analytic structure is posited atop data
 - What do I mean?


- Structure-driven placement, cont:
 - Explicit graph structure or tree structure
 - Compare with star co-ordinates: clusters make themselves obvious





- Glyph is given meaning not only in and of itself but relative to others
- Space is one of the best ways to order / structure data

Presentation Outline

- Glyphs: Definition
- Basics Of Encodings
- Glyph Discernability
- Placement As Encoding
- Conclusion

Conclusion

- Glyph design and placement is a tricky process
 - Tricky to define, tricky to design
- Many interfering and confounding factors
 - Simple approaches still outweigh overloaded encodings (Yost)
 - Concepts are generalizable and applicable in other areas of viz
 - (Texture, small multiples as seen through a glyph framework?)
- Questions?