Lecture 3: Focus+Context Information Visualization CPSC 533C, Fall 2006

Tamara Munzner

UBC Computer Science

19 September 2006

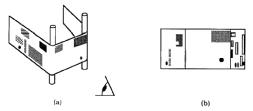
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Papers Covered

A Review and Taxonomy of Distortion-Oriented Presentation Techniques. Y.K. Leung and M.D. Apperley, ACM Transactions on Computer-Human Interaction, Vol. 1, No. 2, June 1994, pp. 126-160. [http://www.ai.mit.edu/people/jimmylin/papers/Leung94.pdf]

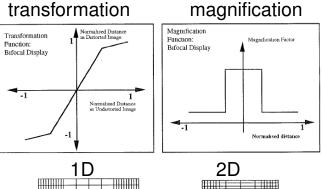
Nonlinear Magnification Fields. Alan Keahey, Proc InfoVis 1997 [http://citeseer.nj.nec.com/keahey97nonlinear.html]

The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. John Lamping and Ramana Rao, Proc SIGCHI '95. [http://citeseer.nj.nec.com/lamping95focuscontext.html]


H3: Laying Out Large Directed Graphs in 3D Hyperbolic Space. Tamara Munzner, Proc InfoVis 97 [http://graphics.stanford.edu/papers/h3/]

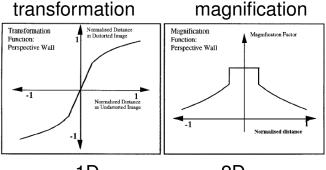
TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. Munzner, Guimbretiere, Tasiran, Zhang, and Zhou. SIGGRAPH 2003. [http://www.cs.ubc.ca/~tmm/papers/tj/]

hyperbolic geometry background, if time

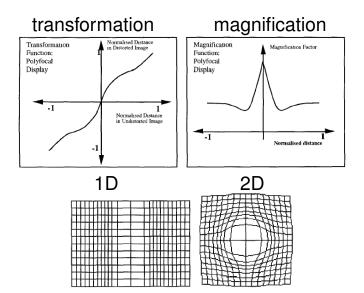

Focus+Context Intuition

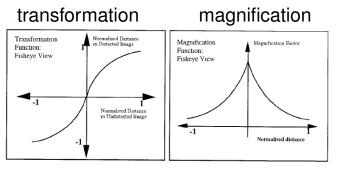
move part of surface closer to eye

- stretchable rubber sheet
- borders tacked down
- merge overview and detail into combined view


Bifocal Display

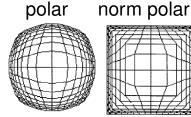
		Γ
		Ļ
		L


Perspective Wall


1D						

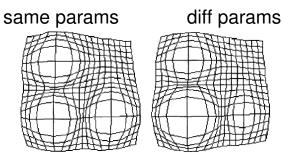
Polyfocal: Continuous Magnification

Fisheye Views: Continuous Mag

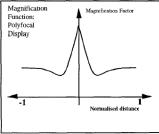


1D

	ПТ	TTIM
	H	
	 \vdash	
	 ++	
	 LL.	


III	11			-	
			_		
	+	 		+	$\left \right $
	\downarrow				Ш
Ш			_		П
				+	

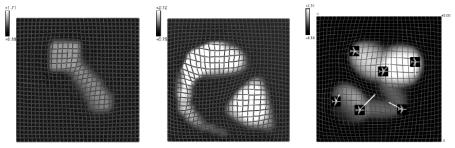
2D rect



Multiple Foci

polyfocal magnification function dips allow this

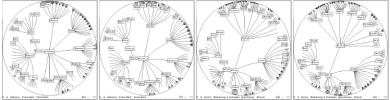
Nonlinear Magnification


- transformation
 - distortion
- magnification
 - derivative of transformation
- directionality
 - easy: given transformation, compute magnification
 - differentiation
 - hard: given magnification, compute transformation
 - integration
- new mathematical framework
 - approximate integration, iterative refinement

minimize error mesh

magnification is more intuitive control

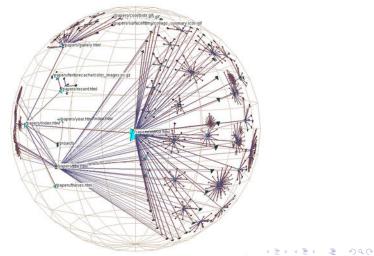
allow expressiveness, data-driven expansion


Iteration: 651

Iteration: 5205

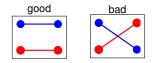
2D Hyperbolic Trees

fisheye effect from hyperbolic geometry

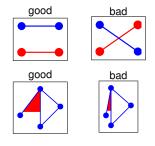


[video]

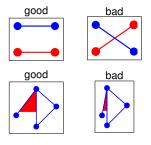
• • • • • • • • • • • •


3D Hyperbolic Graphs: H3

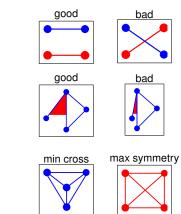
 spanning tree backbone for quasi-hierarchical graphs
video


minimize

crossings, area, bends/curves

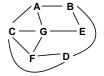

minimize

- crossings, area, bends/curves
- maximize
 - angular resolution, symmetry


minimize

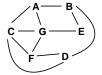
- crossings, area, bends/curves
- maximize
 - angular resolution, symmetry
- most criteria NP-hard
 - edge crossings (Garey and Johnson 83)

minimize


- crossings, area, bends/curves
- maximize
 - angular resolution, symmetry
- most criteria NP-hard
 - edge crossings (Garey and Johnson 83)
- incompatible
 - (Brandenburg 88)

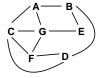
Layout

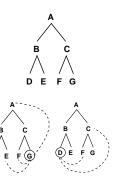
problem


general problem is NP-hard

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

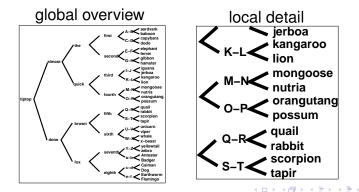
Layout


- problem
 - general problem is NP-hard
- solution
 - tractable spanning tree backbone
 - match mental model
 - quasi-hierarchical
 - use domain knowledge to construct
 - select parent from incoming links



Layout

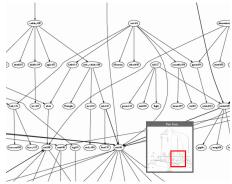
- problem
 - general problem is NP-hard
- solution
 - tractable spanning tree backbone
 - match mental model
 - quasi-hierarchical
 - use domain knowledge to construct
 - select parent from incoming links
 - non-tree links on demand



ヘロト ヘポト ヘヨト ヘヨト

Avoiding Disorientation

- problem
 - maintain user orientation when showing detail
 - hard for big datasets
- exponential in depth
 - node count, space needed


Overview and detail

- two windows: add linked overview
 - cognitive load to correlate

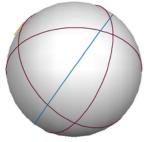
Overview and detail

- two windows: add linked overview
 - cognitive load to correlate

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

solution

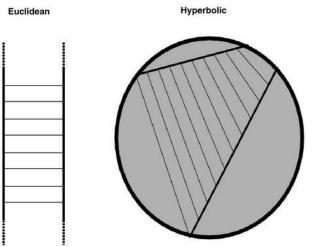
- merge overview, detail
- focus+context


Noneuclidean Geometry

Euclid's 5th Postulate

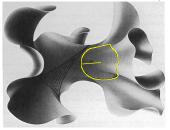
- exactly 1 parallel line
- spherical
 - geodesic = great circle
 - no parallels

hyperbolic


infinite parallels

(torus.math.uiuc.edu/jms/java/dragsphere)

Parallel vs. Equidistant


- euclidean: inseparable
- hyperbolic: different

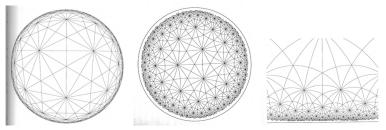
Exponential Amount Of Room

room for exponential number of tree nodes

2D hyperbolic plane embedded in 3D space

[Thurston and Weeks 84]

hemisphere area

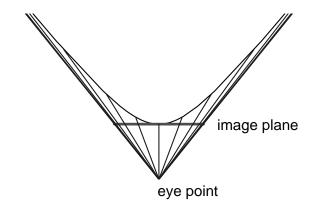

hyperbolic: exponential $2\pi \sinh^2 r$

euclidean: polynomial $2\pi r^2$

(日) (日) (日) (日) (日) (日) (日)

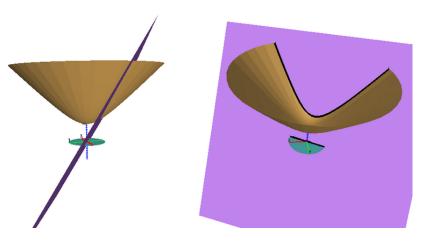
Models, 2D

Klein/projective Poincare/conformal Upper Half Space



[Three Dimensional Geometry and Topology, William Thurston, Princeton University Press]

1D Klein

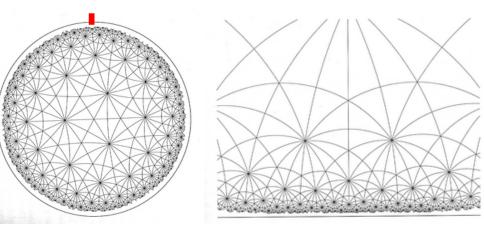

hyperbola projects to line

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

hyperbola projects to disk

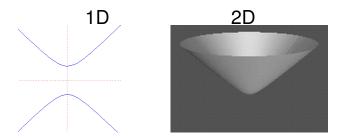
(graphics.stanford.edu/papers/munzner_thesis/html/node8.html#hyp2Dfig)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●


Klein vs Poincare

- Klein
 - straight lines stay straight
 - angles are distorted
- Poincare
 - angles are correct
 - straight lines curved
- graphics
 - Klein: 4x4 real matrix
 - Poincare: 2x2 complex matrix

Upper Half Space

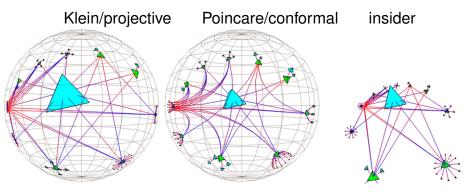

cut and unroll Poincare

one point on circle goes to infinity

[demo: www.geom.umn.edu/~crobles/hyperbolic/hypr/modl/uhp/uhpjava.html]

Minkowski

[www-gap.dcs.st-and.ac.uk/~history/Curves/Hyperbola.html]

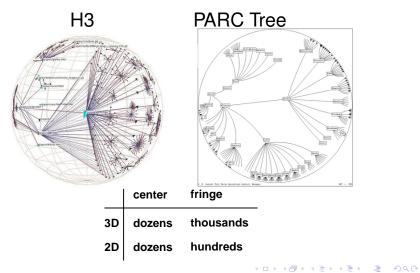

[www.geom.umn.edu/~crobles/hyperbolic/hypr/modl/mnkw/]

the hyperboloid itself embedded one dimension higher

Models, 3D

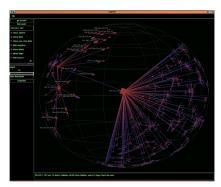
3-hyperbola projects to solid ball

- Upper Half Space
- Minkowski



[graphics.stanford.edu/papers/webviz/]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●


3D vs. 2D Hyperbolic Scalability

information density: 10x better

Scalability

- success: large local neighborhood visible, 5-9 hops
- limit: if graph diameter >> visible area
 - TreeJuxtaposer: global vs. local F+C

