Color in Information Display

Maureen Stone StoneSoup Consulting

Effective Color

What is Color?

Physical World

Visual System

Mental Models

objects

Lights, surfaces, ____ Eye, optic nerve, ____ visual cortex

Red, green, brown

Bright, light, dark, vivid, colorful, dull

Warm, cool, bold, blah, attractive, ugly, pleasant, jarring

Perception and Cognition

Color Models

Physical World

Spectral Distribution

- Visible light
- Power vs. wavelength

Any source

- Direct
- Transmitted
- Reflected
- Refracted

Cone Response

Encode spectra as three values

- Long, medium and short (LMS)
- Trichromacy: only LMS is "seen"
- Different spectra can "look the same"

Sort of like a digital camera*

Effects of Retinal Encoding

All spectra that stimulate the same cone response are indistinguishable

Metameric match

Color Measurement

CIE Standard ObserverCIE tristimulus values (XYZ)All spectra that stimulate the same tristimulus (XYZ) response are indistinguishable

From A Field Guide to Digital Color, © A.K. Peters, 2003

Chromaticity Diagram

Project X,Y,Z on a plane to separate colorfulness from brightness

x = X/(X+Y+Z) y = Y/(X+Y+Z)z = Z/(X+Y+Z)

1 = x + y + z

XYZ = xyY

RGB Chromaticity

R,G,B are points (varying lightness) Sum of two colors lies on line

Gamut is a triangle

- White/gray/black near center
- Saturated colors on edges

Display Gamuts

Projector Gamuts

Pixels to Intensity

Linear

- I = kp (I = intensity, p = pixel value, k is a scalar)
- Best for computation

Non-linear

- $I = kp^{1/\gamma}$
- Perceptually more uniform
- More efficient to encode as pixels
- Best for encoding and display

Color Models

Opponent Color

Definition

- Achromatic axis
- R-G and Y-B axis
- Separate lightness from chroma channels

First level encoding

- Linear combination of LMS
- Before optic nerve
- Basis for perception
- Defines "color blindness"

Vischeck

Simulates color vision deficiencies

- Web service or Photoshop plug-in
- Robert Dougherty and Alex Wade

www.vischeck.com

Deuteranope

Tritanope

2D Color Space

Similar Colors

protanope	deuteranope	luminance

Genes in Vischeck

Color Models

Perceptual Color Spaces

Munsell Atlas

CIELAB and CIELUV

Lightness (L*) plus two color axis (a*, b*) Non-linear function of CIE XYZ Defined for computing color differences (reflective)

From Principles of Digital Image Synthesis by Andrew Glassner. SF: Morgan Kaufmann Publishers, Fig. 2.4 & 2.5, Page 63 & 64 © 1995 by Morgan Kaufmann Publishers. Used with permission.

Psuedo-Perceptual Models

HLS, HSV, HSB NOT perceptual models Simple renotation of RGB

- View along gray axis
- See a hue hexagon
- L or V is grayscale pixel value

Cannot predict perceived lightness

L vs. Luminance, L*

Lightness Scales

Lightness, brightness, luminance, and L*

- Lightness is relative, brightness absolute
- Absolute intensity is light power

Luminance is perceived intensity

- Luminance varies with wavelength
- Variation defined by luminous efficiency function
- Equivalent to CIE Y
- L* is perceptually uniform lightness

Luminance & Intensity

Intensity

• Integral of spectral distribution (power)

Luminance

- Intensity modulated by wavelength sensitivity
- Integral of spectrum × luminous efficiency function

Luminance from RGB

$L = rL_R + gL_G + bL_B$

Not a fixed equation!

- L_R, L_G, L_B
 - Maximum luminance of RGB primaries
 - Different for different displays
 - Affected by brightness & contrast controls

r,g,b

- Relative intensity values (linear)
- Depends on "gamma curve"
- Not pixel values

Color Models

Color differences "Intuitive" color spaces

Color scales

Color Appearance

Image courtesy of John MCann

Image courtesy of John MCann

Color Appearance

More than a single color

- Adjacent colors (background)
- Viewing environment (surround)

Appearance effects

- Adaptation
- Simultaneous contrast
- Spatial effects

Color in context

Color Appearance Models Mark Fairchild

Simultaneous Contrast

Add Opponent Color

- Dark adds light
- Red adds green
- Blue adds yellow

These samples will have both light/dark and hue contrast

Affects Lightness Scale

Bezold Effect

Crispening

Perceived difference depends on background

From Fairchild, Color Appearance Models

Spreading

Spatial frequency

- The paint chip problem
- Small text, lines, glyphs
- Image colors

Adjacent colors blend

Redrawn from *Foundations of Vision* © Brian Wandell, Stanford University

Color Models

Contrast effects Image appearance Complex matching

Effective Color

What makes color effective?

"Good ideas executed with superb craft"

-E.R. Tufte

Effective color needs a context

- Immediate vs. studied
- Anyone vs. specialist
- Critical vs. contextual
- Culture and expectations
- Time and money

Why Should You Care?

Poorly designed color is confusing

- Creates visual clutter
- Misdirects attention

Poor design devalues the information

- Visual sophistication
- Evolution of document and web design
- "Attractive things work better"

-Don Norman

Information Display

Graphical presentation of information

• Charts, graphs, diagrams, maps, illustrations

www.nps.gov

- Originally hand-crafted, static
- Now computer-generated, dynamic
- Color is a key component
 - Color labels and groups
 - Color scales (colormaps)
 - Multi-variate color encoding
 - Color shading and textures
 - And more...

"Color" includes Gray

Maps courtesy of the National Park Service (www.nps.gov)

Color Design

Goals

- Highlight, emphasize
- Create regions, group
- Illustrate depth, shape
- Evoke nature
- Decorate, make beautiful

Color harmony

"...successful color combinations, whether these please the eye by using analogous colors, or excite the eye with contrasts."

-Principles of Color Design, by Wucius Wong

Color Design Terminology

Hue (color wheel)

- Red, yellow, blue (primary)
- Orange, green, purple (secondary)
- Opposites complement (contrast)
- Adjacent are analogous
- Many different color wheels*

*See www.handprint.com for examples

Chroma (saturation)

- Intensity or purity
- Distance from gray

Value (lightness)

- Dark to light
- Applies to all colors, not just gray

Tints and Tones

Tone or shade

- Hue + black
- Decrease saturation
- Decrease lightness

Tint

- Hue + white
- Decrease saturation
- Increase lightness

Gradations

Color Design Principles

Control value (lightness)

- Ensure legibility
- Avoid unwanted emphasis
- Use a limited hue palette
 - Control color "pop out"
 - Define color grouping
 - Avoid clutter from too many competing colors
- Use neutral backgrounds
 - Control impact of color
 - Minimize simultaneous contrast

Envisioning Information

"... avoiding catastrophe becomes the first principle in bringing color to information: *Above all, do no harm.*"

In the property conservations Compare a set presentation of the exciton for electron high angula control h_{ij} with them V address proof weathing that \sum_{i} and y is q where we add the form follow the second second of its primary orders and that yes controlly resulted for larger City practicly realing our Values that large free factors from the in Receptories of herm and slipters, and all ring for a direct properties what the while wave Barries of these parameters of the bit outpression steps for the Material d for Andrew Presight test studies a would pe of the Lybbard March and down hard market ricipants for pair princip roles, equipmented by or of plantshif course wave, we are expressioned 圈()---we dender words the assessingles have of th they we will press have aldered on allered how they had a police scar with the despitest and it is where here of the desired e dahé angka 10k mangké k = Close In the second second second second hand on hand 🗟 a - 🛷 (name a la cale 🕅 a 📣 And the second s er 🏬 kan terang www.edwardtufte.com

-E. R. Tufte

Fundamental Uses

To label To measure To represent or to imitate reality To enliven or decorate

To Label

Identify by Color

Information Visualization Colin Ware

Product Categories

Created by Tableau - Visual Analysis for Databases™

Grouping, Highlighting

	Х	Y	Z	Х	Y	Z	Х	Y	Z	Х	Y	Z
red	25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
green	22.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
blue	13.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
gray	63.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71
	Х	Y	Z	Х	Y	Z	Х	Y	Z	Х	Y	Z
red	X 25.37	Y 13.70	Z 0.05	X 26.27	Y 14.13	Z 0.04	X 18.41	Y 10.16	Z 0.05	X 17.43	Y 9.30	Z 0.00
red green	X 25.37 22.14	Y 13.70 51.24	Z 0.05 0.35	X 26.27 20.68	Y 14.13 49.17	Z 0.04 0.44	X 18.41 21.11	Y 10.16 46.00	Z 0.05 0.20	X 17.43 16.36	Y 9.30 37.95	Z 0.00 0.12
red green blue	X 25.37 22.14 13.17	Y 13.70 51.24 3.71	Z 0.05 0.35 74.89	X 26.27 20.68 15.38	Y 14.13 49.17 5.20	Z 0.04 0.44 86.83	X 18.41 21.11 11.55	Y 10.16 46.00 3.37	Z 0.05 0.20 65.53	X 17.43 16.36 9.96	Y 9.30 37.95 3.44	Z 0.00 0.12 56.14
red green blue gray	X 25.37 22.14 13.17 63.46	Y 13.70 51.24 3.71 73.30	Z 0.05 0.35 74.89 78.05	X 26.27 20.68 15.38 64.66	Y 14.13 49.17 5.20 71.99	Z 0.04 0.44 86.83 90.08	X 18.41 21.11 11.55 52.96	Y 10.16 46.00 3.37 62.49	Z 0.05 0.20 65.53 67.99	X 17.43 16.36 9.96 45.54	Y 9.30 37.95 3.44 53.65	Z 0.00 0.12 56.14 58.14

Considerations for Labels

How critical is the color encoding?

- Unique specification or is it a "hint"?
- Quick response, or time for inspection?
- Is there a legend, or need it be memorized?

Contextual issues

- Are there established semantics?
- Grouping or ordering relationships?
- Surrounding shapes and colors?

Shape and structural issues

- How big are the objects?
- How many objects, and could they overlap?
- Need they be readable, or only visible?

Controls and Alerts

Aircraft cockpit design

- Quick response
- Critical information and conditions
- Memorized
- 5-7 unique colors, easily distinguishable

Highway signs

- Quick response
- Critical but redundant information
- 10-15 colors?

Typical color desktop

- Aid to search
- Redundant information
- Personal and decorative
- How many colors?

Psychophysics of Labeling

Preattentive, "pop out"

Time proportional to the number of digits

Time proportional to the number of 7's

Both 3's and 7's "Pop out"

Contrast Creates Pop-out

Hue and lightness

Lightness only

Pop-out vs. Distinguishable

Pop-out

- Typically, 5-6 distinct values simultaneously
- Up to 9 under controlled conditions

Distinguishable

- 20 easily for reasonable sized stimuli
- More if in a controlled context
- Usually need a legend

Radio Spectrum Map (33 colors)

http://www.cybergeography.org/atlas/us_spectrum_map.pdf

Distinguishable on Inspection

216 218 220

MOBIL

(S-E)

SATE

MOBI

ISM - 2450.0 ± 50 MHz

3 GHz

Tableau Color Example

Color palettes

- How many? Algorithmic?
- Basic colors (regular and pastel)
- Extensible? Customizable?

Color appearance

- As a function of size
- As a function of background

Robust and reliable color names

Tableau Colors

www.tableausoftware.com

Maximum hue separation

Analogous, yet distinct

Sequential

Color Names

Basic names (Berlin & Kay)

- Linguistic study of names
- Similar names
- Similar evolution
- Many different languages

Distinct colors = distinct names?
Distinct, but hard to name

Color Names Research

Selection by name

- Berk, Brownston & Kaufman, 1982
- Meier, et. al. 2003

Image recoloring

• Saito, et. al.

Labels in visualization

- D'Zmura, Cowan (pop out conditions)
- Healey & Booth (automatic selection)

Web experiment

• Moroney, et. al. 2003

World Color Survey (Kay & Cook)

http://www.icsi.berkeley.edu/wcs/

To Measure

Data to Color

Types of data values

- Nominal, ordinal, numeric
- Qualitative, sequential, diverging

Types of color scales

- Hue scale
 - Nominal (labels)
 - Cyclic (learned order)
- Lightness or saturation scales
 - Ordered scales
 - Lightness best for high frequency
 - More = darker (or more saturated)
 - Most accurate if quantized

Color Scales

Long history in graphics and visualization

- Ware, Robertson et. al
- Levkowitz et. al
- Rheingans

PRAVDA Color

- Rogowitz and Treinish
- IBM Research

Cartography

- Cynthia Brewer
- ColorBrewer

Different Scales

Rogowitz & Treinish, "How not to lie with visualization"

Density Map

Lightness scale

Lightness scale with hue and chroma variation

Hue scale with lightness variation

Phase Diagrams (hue scale)

Singularities occur where all colors meet

The optical singularities of bianisotropic crystals, by M. V. Berry

Phases of the Tides

Figure 1.9. Cotidal chart. Tide phases relative to Greenwich are plotted for all the world's oceans. Phase progresses from red to orange to yellow to green to blue to purple. The lines converge on anphidromic points, singularities on the earth's surface where there is no defined tide. [Winfree, 1987 #1195, p. 17].

Brewer Scales

Nominal scales

• Distinct hues, but similar emphasis

Sequential scale

- Vary in lightness and saturation
- Vary slightly in hue

Diverging scale

- Complementary sequential scales
- Neutral at "zero"

Thematic Maps

US Census Map

Mapping Census 2000: The Geography of U.S. Diversity

Brewer's Categories

Cynthia Brewer, Pennsylvania State University

Color Brewer

This material is based upon work supported by the National Science Foundation under Grant No. 9983451, 9983459, 9983461

Tableau Color Example

Color scales for encoding data

- Displayed as charts and graphs
- Quantized or continuous

Issues

- Color ramps based on Brewer's principles
- Not single hue/chroma varying in lightness
- Create a ramp of the "same color"
- Legible different than distinguishable
- Center, balance of diverging ramps

Heat Map (default ramp)

Full Range

	Columns:	Market	-				
Filters:	Rows:	Region	-	Product	-		
				CONSU	CORPO	HOME	SMALL
Level of Detail:	CENT	FURNITURE					
		OFFICE SUP	P				
		TECHNOLOG	âΥ				
	EAST	FURNITURE					
Mark:		OFFICE SUP	Ρ				
Square 💌		TECHNOLOG	GΥ				
Color: SUM(Gro 💌		FURNITURE					
Legend:		OFFICE SUP	P				
-6,567 410,207		TECHNOLOG	âΥ				
K ← → H \ Sheet 1 /							

Skewed Data

www.tableausoftware.com

Stepped

	Columns:	Market	-				
Filters:	Rows:	Region	-	Product	•		
				CONSU (CORPO	HOME	SMALL
Level of Detail:	CENT	FURNITURE					
		OFFICE SUP	P				
		TECHNOLO	GΥ				
	EAST	FURNITURE					
Mark:		OFFICE SUP	Ρ				
Square 🗾		TECHNOLO	GΥ				
Color: SUM(Gro 🔻		FURNITURE					
Legend:		OFFICE SUP	P				
-45,579 410,207		TECHNOLO	âΥ				
K ← → N Sheet 1/							

Skewed Data

www.tableausoftware.com

Threshold

	Columns:	Market	
Filters:	Rows:	Region	Product
			CONSU CORPO HOME SMALL
Level of Detail:	CENT	FURNITURE	
		OFFICE SUPP.	
		TECHNOLOGY	
	EAST	FURNITURE	
Mark:		OFFICE SUPP.	
Square 💌		TECHNOLOGY	
Color: SUM(Gro 💌		FURNITURE	
Legend:	WEST	OFFICE SUPP	
-410,207 410,207 Size:		TECHNOLOGY	
K ↔ M Sheet 1/			

Skewed Data

www.tableausoftware.com

Color and Shading

Shape is defined by lightness (shading) "Color" (hue, saturation) labels

CT image (defines shape)

PET color highlights tumor

Image courtesy of Siemens

Color Overlay (Temperature)

3D line integral convolution to visualize 3D flow (LIC). Color varies from red to yellow with increasing temperature

Victoria Interrante and Chester Grosch, U. Minnesota

http://www-users.cs.umn.edu/~interran/3Dflow.html

Multivariate Color Sequences

Multi-dimensional Scatter plot

Variable 1, 2 \rightarrow X, Y Variable 3, 4, 5 \rightarrow R, G, B

Do people interpret color blends as sums of variables?

Using Color Dimensions to Display Data Dimensions Beatty and Ware

Color Weaves

6 variables = 6 hues, which vary in brightness

Weaving versus Blending (APGV06 and SIGGRAPH poster) Haleh Hagh-Shenas, Victoria Interrante, Christopher Healey and Sunghee Kim

Brewer System

http://www.colorbrewer.org

Brewer Examples

To Represent or Imitate Reality

Illustrative Color

Gray's Anatomy of the Human Body www.bartleby.com/107/illus520.html

Map of Point Reyes

ThemeView (original)

Courtesy of Pacific Northwest National Laboratories

ThemeScape (commercial)

Courtesy of Cartia

To Enliven or Decorate

Visualization of isoelectron density surfaces around molecules Marc Levoy (1988)

Which has more information? Which would you rather look at?

More Tufte Principles

Limit the use of bright colors

• Small bright areas, dull backgrounds Use the colors found in nature

- Familiar, naturally harmonious
- Use grayed colors for backgrounds
 - Quiet, versatile

Create color unity

• Repeat, mingle, interweave

Controlling Value

Get it right in black & white

Value

- Perceived lightness/darkness
- Controlling value primary rule for design

Value defines shape

- No edge without lightness difference
- No shading without lightness variation
- Value difference (contrast)
 - Defines legibility
 - Controls attention
 - Creates layering

Controls Legibility

R G В Helvetica-plain/Helvetica-plai 0 0 0 Helvetica-plain/Helvetica-plain/Helvetica-plain/Helvetica-plain/Helvetica 0 31 0 Helvetica-plain/Helvetica-plain/Helvetica-plain/Helvetica-plain/Helve 63 0 0 Helvetica-plain/He 0 95 0 Helvetica-plain/He 0 127 ain/ 0 Helvetica-plain/Helvetica-plain/Helvetica-plain/Helvetica-plain/Helvetica-pl 0 159 ain/ 0 Helvetica-plain/Helvetica-plain/Helvetica-plain/Helvetica-plain/Helvetica-plain/ 0 191 0 Helvetica-plain/Helvetica-plai 0 223 0 0 255 0 255,255,255 127,127,127 0.0.0

colorusage.arc.nasa.gov

Legibility

Drop Shadows

Drop Shadow

Drop shadow adds edge

Primary colors on white Primary colors on black Primary colors on black
Readability

If you can't use color wisely, it is best to avoid it entirely Above all, do no harm

> If you can't use color wisely, it is best to avoid it entirely Above all, do no harm.

Why does the logo work?

Value Control

Legibility and Contrast

Legibility

- Function of contrast and spatial frequency
- "Psychophysics of Reading" Legge, et. al.
- Legibility standards
 - 5:1 contrast for legibility (ISO standard)
 - 3:1 minimum legibility
 - 10:1 recommended for small text

How do we specify contrast?

- Ratios of foreground to background luminance
- Different specifications for different patterns

Contrast and Layering

Value contrast creates layering

colorusage.arc.nasa.gov

What Defines Layering?

Perceptual features

- Contrast (especially lightness)
- Color, shape and texture

Task and attention

• Attention affects perception

Display characteristics

• Brightness, contrast, "gamma"

Contrast

General formulation

- Luminance difference (L_f , L_b)
- Depends on adaptation and size

Small symbols, solid background (Weber)

- C = $(L_f L_b)/L_b$
- Adapted to background

Textures, high frequency patterns (Michelson)

- $C = (L_f L_b)/(L_f + L_b)$
- Adapted to average

Luminance is intensity modulated by wavelength sensitivity

Contrast (continued)

Contrast using ΔL^*

- 1 is ideally visible
- 10 is easily visible
- 20 is legible for text

Reasons to use a light background

- More like a reflective surface
- Contrast metrics are more accurate
- Easier to look at in mixed environment

Dark background better for dark environments

L* is the same as Munsell Value, computed as a function of L

Grid Example

Great Grids: How and Why? (APGV06 and SIGGRAPH poster) Maureen Stone, Lyn Bartram and Diane Gromala

Additional Resources

My website

- http://www.stonesc.com/Vis06
- Final copy of slides, references

A Field Guide to Digital Color

• A.K. Peters

