Color in Information Display Maureen Stone StoneSoup Consulting	Effective Color	What is Color?	Color Models
Physical World	Cone Response Encode spectra as three values Long, medium and short (LMS) Trichromacy: only LMS is "seen" - Different spectra can "look the same" Sort of like a digital camera*	Effects of Retinal Encoding All spectra that stimulate the same cone response are indistinguishable	Color Measurement CIE Standard Observer CIE tristimulus values (XYZ) All spectra that stimulate the same tristimulus (XYZ) response are indistinguishable
Chromaticity Diagram	RGB Chromaticity R,G,B are points (varying lightness) Sum of two colors lies on line Gamut is a triangle - White/gray/black near center - Saturated colors on edges	Display Gamuts	Projector Gamuts
Pixels to Intensity Linear - $\mathrm{I}=\mathrm{kp}$ ($\mathrm{I}=$ intensity, $\mathrm{p}=$ pixel value, k is a scalar) - Best for computation Non-linear - I = kp ${ }^{1 / M}$ - Perceptually more uniform - More efficient to encode as pixels - Best for encoding and display		Color Models	Opponent Color Definition - Achromatic axis - R-G and $Y-B$ axis - Separate lightness from chroma channels First level encoding - Linear combination of LMS - Before optic nerve - Defines "color blindness"

Vischeck	2D Color Space	Similar Colors	Genes in Vischeck
Simulates color vision deficiencies - Web service or Photoshop plug-in - Robert Dougherty and Alex Wade www.vischeck.com			
		Color Models	Perceptual Color Spaces
Munsell Atlas	CIELAB and CIELUV Lightness (L*) plus two color axis (a*, b*) Non-linear function of CIE XYZ Defined for computing color differences (reflective) 1995 by	Psuedo-Perceptual Models HLS, HSV, HSB NOT perceptual models Simple renotation of RGB - View along gray axis - See a hue hexagon - L or V is grayscale pixel value Cannot predict perceived lightness	L vs. Luminance, L^{*}
Lightness Scales Lightness, brightness, luminance, and L* - Lightness is relative, brightness absolute - Absolute intensity is light power Luminance is perceived intensity - Luminance varies with wavelength - Variation defined by luminous efficiency function - Equivalent to CIE Y L^{*} is perceptually uniform lightness	Luminance \& Intensity Intensity - Integral of spectral distribution (power) Luminance - Intensity modulated by wavelength sensitivity - Integral of spectrum \times luminous efficiency function Green and blue lights of equal intensity have different luminance values	Luminance from RGB $\mathrm{L}=\mathrm{rL}_{\mathrm{R}}+\mathrm{gL}_{\mathrm{G}}+\mathrm{bL}_{\mathrm{B}}$ Not a fixed equation! L_{R}, L_{G}, L_{B} - Maximum luminance of RGB primaries - Different for different displays r, g, b - Affected by brightness \& contrast controls - Relative intensity values (linear) - Depends on "gamma curve" - Not pixel values	Color Models

Color Appearance			Color Appearance More than a single color - Adjacent colors (background) - Viewing environment (surround) Appearance effects - Adaptation - Simultaneous contrast - Spatial effects Color in context
Simultaneous Contrast Add Opponent Color Dark adds light - Red adds green Blue adds yellow These samples will have both light/dark and hue contrast	Affects Lightness Scale \square	Bezold Effect	Crispening Perceived difference depends on background From Fairchild, Color Appearance Models
Spreading Spatial frequency - The paint chip problem - Small text, lines, glyphs Image colors Adjacent colors blend	Color Models	Effective Color	What makes color effective? "Good ideas executed with superb craft" Effective color needs a context - Immediate vs. studied - Anyone vs. specialist - Critical vs. contextual - Time and money
Why Should You Care? Poorly designed color is confusing - Creates visual clutter - Misdirects attention Poor design devalues the information - Visual sophistication - Evolution of document and web design "Attractive things work better"	Information Display Graphical presentation of information - Charts, graphs, diagrams, maps, illustrations - Originally hand-crafted, static - Now computer-generated, dynamic Color is a key component - Color labels and groups - Color scales (colormaps) - Color shading and textures - And more.	"Color" includes Gray Maps courtesy of the National Park Service (www.nps.gov)	Color Design Goals - Highlight, emphasize - Create regions, group - Illustrate depth, shape - Evoke nature - Decorate, make beautiful Color harmony ...successful color combinations, whether these please the eye by using analogous colors, or excite the eye with contrasts." \qquad -Principles of Color Design, by Wucius Wong

Distinguishable on Inspection	Tableau Color Example Color palettes - How many? Algorithmic? - Basic colors (regular and pastel) - Extensible? Customizable? Color appearance - As a function of size - As a function of background Robust and reliable color names	Tableau Colors	Maximum hue separation
Analogous, yet distinct	Sequential		Color Names
Distinct, but hard to name	Color Names Research Selection by name - Berk, Brownston \& Kaufman, 1982 - Meier, et. al. 2003 Image recoloring - Saito, et. al. Labels in visualization D'Zmura, Cowan (pop out conditions) - Healey \& Booth (automatic selection) Web experiment - Moroney, et. al. 2003 World Color Survey (Kay \& Cook) - http://www.icsi.berkeley.edu/wcs/	To Measure	Data to Color Types of data values Nominal, ordinal, numeric - Qualitative, sequential, diverging Types of color scales - Hue scale - Nominal (labels) - Cyclic (learned order) - Lightness or saturation scales Ordered scales Lightness best for high frequency Most accurate if quantized
Color Scales Long history in graphics and visualization - Ware, Robertson et. al - Levkowitz et. al - Rheingans PRAVDA Color - Rogowitz and Treinish - IBM Research Cartography - Cynthia Brewer - ColorBrewer	Different Scales	Density Map	Phase Diagrams (hue scale) Singularities occur where all colors meet The optical singularities of bianisotropic crystals, by M. V. Berry

