The LPSAT Engine & its Application to
Resource Planning*

Steven A. Wolfman
Department of Computer Science & Engineering
University of Washington, Box 352350
Seattle, WA 98195-2350 USA
wolf@cs.washington.edu

October 10, 1999

Abstract

Compilation to boolean satisfiability has become a powerful paradigm
for solving AI problems. However, domains that require metric reasoning
cannot be compiled efficiently to SAT even if they would otherwise benefit
from compilation. We address this problem by introducing the LCNF rep-
resentation which combines propositional logic with metric constraints.
We present LPSAT, an engine which solves LCNF problems by interleav-
ing calls to an incremental simplex algorithm with systematic satisfaction
methods. We describe a compiler which converts metric resource planning
problems into LCNF for processing by LPSAT. The experimental section of
the paper explores several optimizations to LPSAT, including learning from
constraint failure and randomized cutoffs.

1 Introduction

Recent advances in satisfiability (SAT) solving technology have rendered large,
previously intractable problems quickly solvable [Crawford & Auton, 1993; Sel-
man, Kautz, & Cohen, 1996; Cook & Mitchell, 1997; Bayardo & Schrag, 1997;
Li & Anbulagan, 1997; Gomes, Selman, & Kautz, 1998]. SAT solving has
become so successful that many other difficult tasks are being compiled into
propositional form to be solved as SAT problems. For example, SAT-encoded
solutions to graph coloring, planning, and circuit verification are among the
fastest approaches to these problems [Kautz & Selman, 1996; Selman, Kautz,
& McAllester, 1997].

*We thank people who provided code, help, and discussion: Dan Weld, Greg Badros,
Alan Borning, Corin Anderson, Zack Ives, Henry Kautz, Jana Koehler, Tessa Lau, Denise
Pinnel, Rachel Pottinger, Bart Selman, This research was funded in part by Office of
Naval Research Grant N00014-98-1-0147, by the ARCS foundation, and by National Science
Foundation Grants IRI-9303461 and 1IS-9872128 and a National Science Foundation Graduate
Fellowship

Compiler Solver Decoder

Planning LCNF Value Plan
— —— > LPSAT — —
Problem Assgn

Figure 1: Data flow in the demonstration resource planning system; space pre-
cludes discussion of the grey components.

But many real-world tasks have a metric aspect. For instance, resource plan-
ning, temporal planning, scheduling, and analog circuit verification problems
all require reasoning about real-valued quantities. Unfortunately, metric con-
straints are difficult to express in SAT encodings'. Hence, a solver which could
efficiently handle both metric constraints and propositional formulae would yield
a powerful substrate for handling Al problems.

This paper introduces a new problem formulation, LCNF, which combines
the expressive power of propositional logic with that of linear equalities and
inequalities. We argue that LCNF provides an ideal target language into which
a compiler might translate tasks that combine logical and metric reasoning. We
also describe the LPSAT LCNF solver, a systematic satisfiability solver integrated
with an incremental Simplex algorithm. As LPSAT explores the propositional
search space it updates the set of metric requirements managed by the linear
program solver; in turn, Simplex notifies the propositional solver if these re-
quirements become unsatisfiable.

We report on three optimizations to LPSAT: learning and backjumping,
adapting LPSAT’s core heuristic to trigger variables, and using random restarts.
The most effective of these is the combination of learning and backjumping;
LPSAT learns new clauses by discovering explanations for failure when a branch
of its search terminates. The resulting clauses guide backjumping and constrain
future truth assignments. In particular, we show that analysis of the state of
the linear program solver is crucial in order to learn effectively from constraint
conflicts.

To demonstrate the utility of the LCNF approach, we also present a fully
implemented compiler for resource planning problems. Figure 1 shows how the
components fit together. Their performance is impressive: LPSAT solves large
resource planning problems (encoded in a variant of the PDDL language [McDer-
mott, 1998] based on the metric constructs used by metric 1P [Koehler, 1998]),
including a metric version of the ATT Logistics domain [Kautz & Selman, 1996].

2 The LCNF Formalism

The LCNF representation combines a propositional logic formula with a set of
metric constraints. The key to the encoding is the simple but expressive con-
cept of triggers — each propositional variable may “trigger” a constraint; this
constraint is then enforced whenever the trigger variable’s truth assignment is
true.

1Encoding each value as a separate boolean variable is a simple but unwieldy solution;
bitwise-encodings produce smaller formulae but ones which appear very hard to solve [Ernst,
Millstein, & Weld, 1997].

MazLoad = (load < 30) ; Statements

MazFuel = (fuel < 15) ; defining
MinFuel = (fuel > 7 + load / 2) ; triggered
AllLoaded = (load = 45) ; constraints
MazxLoad ; Triggers for load and
MaxFuel ; fuel limits are unit
Deliver ; The goal is unit

—Move V MinFuel ; Moving requires fuel

- Mowve V Deliver ; Moving implies delivery
= GoodTrip V Deliver ; A good trip requires

= GoodTrip V AllLoaded ; a full delivery

Figure 2: Portion of a tiny LCNF logistics problem (greatly simplified from
compiler output). A truck with load and fuel limits makes a delivery but is too
small to carry all load available (the AllLoaded constraint). Italicized variables
are boolean-valued; typeface are real.

Formally, an LCNF problem is a five-tuple (R, V, A, X, 7T) in which R is a set
of real-valued variables, V is a set of propositional variables, A is a set of linear
equality and inequality constraints over variables in R, X is a propositional
formula in CNF over variables in V, and 7 is a function from V to A which
establishes the constraint triggered by each propositional variable. We require
that A contain a special null constraint which is vacuously true, and this is
used as the 7-value for a variable in V to denote that it triggers no constraint.
Moreover, for each variable v we define 7 (—w) = null.

Under this definition, an assignment to an LCNF problem is a mapping, ¢,
from the variables in R to real values and from the variables in V to truth
values. Given an LCNF problem and an assignment, the set of active constraints
is{ce A|Fv eV ¢(v) =true AT (v) =c}. Wesay that an assignment satisfies
the LCNF problem if and only if it makes at least one literal true in each clause
of ¥ and satisfies the set of active constraints.

Figure 2 shows a fragment of a sample LCNF problem: a truck, which carries
a maximum load of 30 and fuel level of 15, can make a Delivery by executing
the Move action. We discuss later why it cannot have a GoodTrip.

3 The LPSAT Solver

Our first step in constructing the LPSAT engine was to choose solvers to use as
the foundation for its metric and propositional solving portions. The choice was
motivated by the following criteria:

1. It must be easy to modify the propositional solver in order to support
triggers and handle reports of inconsistency from the constraint reasoner.

2. The metric solver must support incremental modifications to the con-
straint set.

3. Because a Simplex solve is more expensive than setting a single proposi-
tional variable’s value, the propositional solver should minimize modifica-
tions to the constraint set.

These principles led us to implement the LPSAT engine by modifying the
RELSAT satisfiability engine [Bayardo & Schrag, 1997] and combining it with
the CASSOWARY constraint solver [Borning et al., 1997; Badros & Borning,
1998] using the method described in [Nelson & Oppen, 1979]. RELSAT makes
an excellent start for processing LCNF for three reasons. First, it performs a
systematic, depth-first search through the space of partial truth assignments;
this minimizes changes to the set of active metric constraints. Second, the code
is exceptionally well-structured. Third, RELSAT incorporates powerful learning
and backjumping optimizations. CASSOWARY is an appropriate Simplex solver
for handling LCNF because it was designed to support and quickly respond to
small changes in its constraint set.

In order to build LPSAT, we modified RELSAT to include trigger variables
and constraints. This required four changes. First, the solver must trigger
constraints as the truth assignment changes. Second, the solver must now check
for a solvable constraint set to ensure that a truth assignment is satisfying.
Third, the solver must report in its solution not only a truth assignment to the
boolean variables, but an assignment of real values to the constraint variables?.
Finally, since even a purely positive trigger variable may (if set to true) trigger
an inconsistent constraint, pure literal elimination cannot act on positive trigger
variables3. Figure 3 displays pseudocode for the resulting algorithm.

4 Incorporating Learning and Backjumping

LPSAT inherits methods for learning and backjumping from RELSAT [Bayardo
& Schrag, 1997]. LPSAT’s depth-first search of the propositional search space
creates a partial assignment to the boolean variables. When the search fails, it
is because the partial assignment is inconsistent with the LCNF problem. LPSAT
identifies an inconsistent subset of the truth assignments in the partial assign-
ment, a conflict set, and uses this subset to learn in two ways. First, since
making the truth assignments represented in the conflict set leads inevitably
to failure, LPSAT can learn a clause disallowing those particular assignments.
For example, in the problem from Figure 2 the constraints triggered by set-
ting MinFuel, MazFuel, MazLoad, and AllLoaded to true are inconsistent, and
MinFuel, MaxFuel, and AllLoaded form a conflict set. So, LPSAT can learn the
clause (—=MinFuel V —MazFuel V —AllLoaded). Second, because continuing
the search is futile until at least one of the variables in the conflict set has its

2While the assignment to the constraint variables is optimal according to CASSOWARY’s
objective function, it is not guaranteed to be the globally optimal assignment to the real
variables by the same measure; a different assignment to the propositional variables might
provide a better solution. So, the specific function used is not vital (we use CASSOWARY’s
default which minimizes the slack in inequalities).

3This restriction falls in line with the pure literal elimination rule if we consider the triggers
themselves to be clauses. The trigger MazLoad = (load < 30) from Figure 2 would then
become the clause “MaxzLoad V (load < 30), and MaxzLoad could no longer be purely positive.

Procedure LPSAT(LCNF problem: (R, V, A, 3, T))
If 3 an empty clause in 3 or BAD?(A), return {L}.
Else if ¥ is empty, return SOLVE(A).
Else if 3 a pure literal in Yand 7 (u) = null,
return {u} ULPSAT((R, V, A, X(u), T)).
Else if 3 a unit clause {u} in X,
return {u} ULPSAT((R,V,AUT (u), X(u),T)).
Else choose a variable, v, mentioned in X.
Let A = LPSAT((R,V,AUT (v),X(v), T)).
If L ¢A return {v} U A.
0 Else, return {—v} ULPSAT((R, V, A, (), T)).

= © 00 O Uk Wik -

Figure 3: Core LPSAT algorithm (without learning or backjumping). BAD?
denotes a check for constraint inconsistency; SOLVE returns constraint variable
values. 7 (u) returns the constraint triggered by u (possibly null). ¥(u) denotes
the result of setting literal u true in ¥ and simplifying.

MinFuel
P
A(T F\A
MaxFuel
T/
r'g
MaxLoad
S
LT F
AllLoaded 7\
T/
r'g

4

Figure 4: Possible search tree for the constraints from Figure 2. Each node is
labeled with the variable set at that node; branchpoints have true (T) and false
(F) branches. L indicates an inconsistent constraint set. The bold variables are
members of the conflict set.

truth assignment changed, LPSAT can backjump in its search to the deepest
branch points at which a conflict set variable received its assignment, ignor-
ing any deeper branch points. Figure 4 shows a search tree in which MinFuel,
MazxFuel, MazLoad, and AllLoaded have all been set to true. Using the conflict
set containing MinFuel, MazFuel, and AllLoaded, LPSAT can backjump past the
branchpoint for MazLoad to the branchpoint for MinFuel, the deepest member
of the conflict set which is a branchpoint.

However, while LPSAT inherits methods to use conflict sets from RELSAT,
LPSAT must produce those conflict sets for both propositional and constraint fail-
ures while RELSAT produces them only for propositional failures. Thus, given
a propositional failure LPSAT uses RELSAT’s conflict set discovery mechanism
unchanged, learning a set based on two of the clauses which led to the con-
tradiction [Bayardo & Schrag, 1997). For a constraint conflict, however, LPSAT
identifies an inconsistent subset of the active constraints, and the propositional

MaxLoad AllLoaded
15 $ MaxFuel

\“\(\Y’\)e\

fuel

I
0 load 30 45

Figure 5: Graphical depiction of the constraints from Figure 2. The shaded area
represents solutions to the set of solid-line constraints. The dashed AllLoaded
constraint causes an inconsistency.

triggers for these constraint compose the conflict set. We examine two methods
for identifying these inconsistent subsets.

In our first method, called global conflict set discovery, LPSAT includes the
entire set of active constraints in the conflict set. This mechanism is simple
but often suboptimal since a smaller conflict set would provide greater pruning
action. Indeed, preliminary experiments showed that — while global conflict set
discovery did increase solver speed over a solver with no learning or backjumping
facility — the conflict sets were on average twice as large as those found for
logical conflicts.

In our second method, called minimal conflict set discovery, LPSAT identifies
a (potentially) much smaller set of constraints which are responsible for the
conflict. Specifically, our technique identifies an inconsistent conflict set of which
every proper subset is consistent.

Figure 5 illustrates the constraints from the example in Figure 2. The con-
straints MaxLoad, MaxFuel, and MinFuel and the implicit constraints that fuel
and load be non-negative are all consistent; however, with the introduction of
the dashed constraint marked AllLoaded the constraint set becomes inconsis-
tent. Informally, LPSAT finds a minimal conflict set by identifying only those
constraints which are, together, in greatest conflict with the new constraint. We
now discuss how LPSAT discovers the conflicting constraints in this figure and
which set it discovers.

When LPSAT adds the AllLoaded constraint to CASSOWARY’s constraint set,
CASSOWARY initially adds a “slack” version of the constraint which allows er-
ror and is thus trivially consistent with the current constraint set. This error
is then minimized by the same routine used to minimize the overall objective
function [Badros & Borning, 1998]. In Figure 5, we show the minimization as a
move from the initial solution at the upper left corner point to the solution at
the upper right corner point of the shaded region. The error in the solution is
the horizontal distance from the solution point to the new constraint AllLoaded.
Since no further progress within the shaded region can be made toward All-
Loaded, the error has been minimized; however, since the error is non-zero, the
strict constraint is inconsistent.

At this point, LPSAT uses “marker variables” (which CASSOWARY adds to
each original constraint) to establish the conflict set. A marker variable is a vari-
able that was added by exactly one of the original constraints and thus identifies

the constraint in any derived equations. LPSAT examines the derived equation
that gives the error for the new constraint, and notes that each constraint with
a marker variable in this equation contributes to keeping the error non-zero.
Thus, all the constraints identified by this equation, plus the new constraint
itself, compose a conflict set.

In Figure 5 the MinFuel and MazFuel constraints restrain the solution point
from coming closer to the AllLoaded line. If the entire active constraint set
were any two of those three constraints, the intersection of the two constraints’
lines would be a valid solution; however, there is no valid solution with all three
constraints.

Note that another conflict set (AllLoaded plus MazLoad) exists with even
smaller cardinality than the one we find. In general, there may be many minimal
conflict sets, and our conflict discovery technique will discover only one of these,
with no guarantee of discovering the global minimum. Some of these sets may
prove to have better pruning action, but we know of no way to find the best
minimal conflict set efficiently. However, the minimal conflict set is at least as
good as (and usually better than) any of its supersets.

A brief proof that our technique will return a minimal conflict set appears
in the LPSAT technical report [Wolfman & Weld, 1999].

5 The Resource Planning Application

In order to demonstrate LPSAT’s utility, we implemented a compiler for met-
ric planning domains (starting from a base of 1PP’s [Koehler et al., 1997] and
BLACKBOX’s [Kautz & Selman, 1998] parsers) which translates resource plan-
ning problems into LCNF form. After LPSAT solves the LCNF problem, a small
decoding unit maps the resulting boolean and real-valued assignments into a so-
lution plan (Figure 1). We believe that this translate/solve/decode architecture
is effective for a wide variety of problems.

5.1 Action Language

Our planning problems are specified in an extension of the PDDL language [Mc-
Dermott, 1998]; we support PDDL typing, equality, quantified goals and effects,
disjunctive preconditions, and conditional effects. In addition, we handle metric
values with two new built-in types: float and fluent. A float’s value may not
change over the course of a plan, whereas a fluent’s value may change from time
step to time step. Moreover, we support fluent- and float-valued functions, such
as 7distance[Nagoya,Stockholm].

Floats and fluents are manipulated with three special built-in predicates:
test, set, and influence. Test statements are used as predicates in action
preconditions; set and influence are used in effects. As its argument, test
takes a constraint (an equality or inequality between two expressions composed
of floats, fluents, and basic arithmetic operations); it evaluates to true if and
only if the constraint holds. Set and influence each take two arguments: the
object (a float or fluent) and an expression. If an action causes a set to be
asserted, the object’s value after the action is defined to be the expression’s

Action loop-a Action loop._b
pre: test fluentl = 0 pre: test fluent2 = 0
eff: set fluent2 =1 eff: set fluentl =1

Figure 6: Two actions which can execute in parallel, but which cannot be
serialized.

value before the action. An asserted influence changes an object’s value by
the value of the expression, as in the equation object := object + expression;
multiple simultaneous influences are cumulative in their effect [Falkenhainer
& Forbus, 1988].

5.2 Plan Encoding

The compiler uses a regular action representation with explanatory frame ax-
ioms and conflict exclusion [Ernst, Millstein, & Weld, 1997]. We adopt a stan-
dard fluent model in which time takes nonnegative integer values. State-fluents
occur at even-numbered times and actions at odd times. The initial state is
completely specified at time zero, including all properties presumed false by the
closed-world assumption.

Each test, set, and influence statement compiles to a propositional vari-
able that triggers the associated constraint. Just as logical preconditions and
effects are implied by their associated actions, the triggers for metric precondi-
tions and effects are implied by their actions.

The compiler must generate frame axioms for constraint variables as well as
for propositional variables, but the axiomatizations are very different. Explana-
tory frames are used for boolean variables, while for real variables, compilation
proceeds in two steps. First, we create a constraint which, if activated, will set
the value of the variable at the next step equal to its current value plus all the
influences that might act on it (untriggered influences are set to zero). Next, we
construct a clause which activates this constraint unless some action actually
sets the variable’s value.

For a parallel encoding, the compiler must consider certain set and influence
statements to be mutually exclusive. For simplicity, we adopt the following con-
vention: two actions are mutually exclusive if and only if at least one sets a
variable which the other either influences or sets.

This exclusivity policy results in a plan which is correct if actions at each
step are executed strictly in parallel; however, the actions may not be serializ-
able, as demonstrated in Figure 6. In order to make parallel actions arbitrarily
serializable, we would have to adopt more restrictive exclusivity conditions and
a less expressive format for our test statements.

6 Experimental Results

There are currently few available metric planners with which to compare LPSAT.
The ZENO system [Penberthy & Weld, 1994] is more expressive than our sys-

Time (s)
[

—.a--No Learning
---m-- Global Conflict Sets
—— Minimal Conflict Sets

easy-1 easy-2 easy-3 easy-4 log-a log-b log-c log-d
Metric Logistics Problems

Figure 7: Solution times for three versions of LPSAT in the metric logistics
domain. No learning or backjumping is performed in the line marked “No
learning.” Global conflict sets and minimal conflict sets use progressively better
learning algorithms. Note that the final point on each curve reaches the resource
cutoff (one hour).

tem, but ZENO is unable even to complete easy-1, our simplest metric logistics
problem. There are only a few results available for Koehler’s metric 1PP sys-
tem [Koehler, 1998], and code is not yet available for direct comparisons.

In light of this, this section concentrates on displaying results for LPSAT
in an interesting domain and on describing the heuristics and optimization we
used to enhance LPSAT’s performance. We report LPSAT solve time, running
on a Pentium IT 450 MHz processor with 128 MB of RAM, averaged over 20
runs per problem, and showing 95 percent confidence intervals. We do not
include compile time for the (unoptimized) compiler since the paper’s focus is
the design and optimization of LPSAT; however, compile time can be substantial
(e.g., twenty minutes on log-c).

We report on a sequence of problems in the metric logistics domain, which
includes all the features of the ATT logistics domain [Kautz & Selman, 1996]:
airplanes and trucks moving packages among cities and sites within cities. How-
ever, our metric version adds fuel and distances between cities; airplanes and
trucks both have individual maximum fuel capacities, consume fuel to move (the
amount is per trip for trucks and based on distance between cities for airplanes),
and can refuel at depots. log-a through log-d are the same as the ATT prob-
lems except for the addition of fuel. easy-1 through easy-4 are simplifications of
log-a with more elements retained in the higher numbered problems. We report
on highly successful experiments with learning and backjumping as well as two
other interesting optimizations.

6.1 Learning and Backjumping

The results in Figure 7 demonstrate the improvement in solving times resulting
from activating the learning and backjumping facilities which were described
in Section 4. Runs were cut off after one hour of solve time (the minimal
conflict set technique ran over an hour only on log-d). Without learning or
backjumping LPSAT quickly exceeds the maximum time allotted to it. With
learning and backjumping activated using global conflict sets, the solver handles

4004 ORaw
OTuned Cutoff

3004 OCutoff Doubling

Time (s)

200+

100+

0 P S |
m-log-a m-log-b m-log-c

Metric Logistics Problems

Figure 8: Solution times for two types of random restarts. Tuned cutoff uses
raw experimental data to select a constant cutoff. Cutoff doubling starts with
a cutoff of one second and doubles it on each run.

larger problems and runs faster. Our best method, minimal conflict sets, quickly
solves even some of the harder problems in the metric logistics domain.

6.2 Splitting Heuristic

Line 7 of the LPSAT pseudocode (Figure 3) makes a nondeterministic choice of
variable v before the recursive call, and the splitting heuristic used to guide this
choice can bias performance. We expected the standard RELSAT heuristic to
perform poorly (due to a overly strong preference for trigger variables) for two
reasons: 1) the trigger itself is an implicit clause which is resolved when a trigger
variable is set, and 2) each time the solver modifies a trigger variable, it may call
CASSOWARY, and these calls often dominate runtime. We tried several methods
of including information about the trigger variables in the splitting heuristic,
including adding and multiplying the score of trigger variables by a user-settable
preference value. To our surprise, however, we were unable to achieve significant
improvement (although increasing the preference for trigger variables did slow
execution). These results lead us to suspect that either that LCNF problems are
generally insensitive to our heuristics or that our compilation of metric planning
domains already encodes information about trigger variables in the structure of
the problem. Further experiments will decide the issue.

6.3 Random Restarts

Because LPSAT uses a randomized backtracking algorithm and because early
experimental results showed a small percentage of runs far exceeded the median
runtime, we experimented with random restarts using a process similar to the
one described in [Gomes, Selman, & Kautz, 1998]. We cut off solving at a
deadline — which can be either fixed beforehand or geometrically increasing —
and restart the solver with a new random seed.

Figure 8 shows the results of these experiments. We first ran the algorithm
twenty times on each problem to produce the “Raw” entries*. Then, we calcu-
lated the cutoff time which minimized the expected runtime of the system based

4All three sets of runs use minimal conflict sets, learning, and backjumping.

on these twenty runs. Finally, we reran the problems with this tuned cutoff time
to produce the “Tuned Cutoff” data.

While this technique provides some speedup on log-b and impressive speedup
on log-c, it requires substantial, preliminary research into the difficulty of the
problem (in order to determine the appropriate cutoff time). Unless LPSAT is
being used repeatedly to solve a single problem or several very similar problems,
the process of finding good restart times will dominate overall runtime.

Therefore, we also experimented with a restart system which requires no
prior analysis. This “Cutoff doubling” approach sets an initial restart limit of
one second and increases that limit by a factor of two on each restart until
reaching a solution. We have not yet performed any theoretical analysis of the
effectiveness of this technique, but Figure 8 demonstrates a small improvement.
More interesting than the average improvement, however, is the fact that this
method improved the consistency of the runtimes on the harder problems; in-
deed, on log-c five of the twenty “Raw” runs lasted longer than the longest
“Cutoff doubling” run.

7 Related Work

Limited space precludes a survey of propositional satisfiability algorithms and
linear programming methods in this paper. See [Cook & Mitchell, 1997] for a
survey of satisfiability and [Karloff, 1991] for a survey of linear programming.

Our work was inspired by the idea of compiling probabilistic planning prob-
lems to MAJSAT [Majercik & Littman, 1998]. It seemed that if one could extend
the SAT “virtual machine” to support probabilistic reasoning, then it would be
useful to consider the orthogonal extension to handle metric constraints.

Other researchers have combined logical and constraint reasoning, usually
in the context of programming languages. CLPR may be thought of as an inte-
gration of Prolog and linear programming, and this work introduced the notion
of incremental Simplex [Jaffar et al., 1992]. Saraswat’s thesis [Saraswat, 1989
formulates a family of programming languages which operate through the in-
cremental construction of a constraint framework. cHIP [Van Hentenryck, 1989]
augments logic programming with the tools to efficiently solve constraint satis-
faction problems (e.g., consistency checking), but deals only with variables over
finite domains. NUMERICA extends this work by adding a variety of differential
equation solvers to the mix [Van Hentenryck, 1997]. Hooker et al. describe a
technique for combining linear programming and constraint propagation [Hooker
et al., 1999].

BLACKBOX uses a translate/solve/decode scheme for planning and satisfia-
bility [Kautz & Selman, 1998]. ZENO is a causal link temporal planner which
handled resources by calling an incremental Simplex algorithm within the plan-
refinement loop [Penberthy & Weld, 1994]. The GRAPHPLAN [Blum & Furst,
1995] descendant IPP has also been extended to handle metric reasoning in its
plan graph [Koehler, 1998]. sipE [Wilkins, 1990] and OPLAN [Currie & Tate,
1991] are industrial strength planners which include resource planning capabili-
ties. Two recent systems address the metric planning problem using compilation
to integer programming [Kautz & Walser, 1999; Vossen et al., 1999).

8 Conclusions and Future Work

LPSAT is a promising new technique that combines the strengths of fast satis-
fiability methods with an incremental Simplex algorithm to efficiently handle
problems involving both propositional and metric reasoning. This paper makes
the following contributions:

e We defined the LCNF formalism for combining boolean satisfiability with
linear (in)equalities.

e We implemented the LPSAT solver for LCNF by combining the RELSAT sat-
isfiability solver [Bayardo & Schrag, 1997 with the CASSOWARY constraint
reasoner [Badros & Borning, 1998].

e We experimented with three optimizations for LPSAT: adapting the split-
ting heuristic to trigger variables, adding random restarts, and incorpo-
rating learning and backjumping. Using minimal conflict sets to guide
learning and backjumping provided four orders of magnitude speedup.

e We implemented a compiler for resource planning problems. LPSAT’S per-
formance with this compiler was much better than that of ZENO [Penberthy
& Weld, 1994).

Much remains to be done. There are many ways we could improve the
compiler: improving its runtime by optimizing exclusion detection, exploring
new exclusion encodings, optimizing the number of constraints used for influ-
ences, and improving our handling of conditional effects. In addition, we wish to
investigate the issue of tuning restarts to problems, including a thorough inves-
tigation of exponentially growing resource limits. It would also be interesting
to implement an LCNF solver based on a stochastic engine. We hope to add
support for more expressive constraints by adding nonlinear solvers.

References

[Badros & Borning, 1998] Badros, G. J., and Borning, A. 1998. The Cassowary Linear
Arithmetic Constraint Solving Algorithm: Interface and Implementation. Technical
Report 98-06-04, University of Washington, Department of Computer Science and
Engineering.

[Bayardo & Schrag, 1997] Bayardo, R., and Schrag, R. 1997. Using CSP look-back
techniques to solve real-world SAT instances. In Proceedings of the Fourteenth

National Conference on Artificial Intelligence, 203—208. Providence, R.I.: Menlo
Park, Calif.: AAAT Press.

[Blum & Furst, 1995] Blum, A., and Furst, M. 1995. Fast planning through planning
graph analysis. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, 1636—1642. San Francisco, Calif.: Morgan Kaufmann.

[Borning et al., 1997] Borning, A., Marriott, K., Stuckey, P., and Xiao, Y. 1997.
Solving linear arithmetic constraints for user interface applications. In Proceedings
of the 1997 ACM Symposium on User Interface Software and Technology.

[Cook & Mitchell, 1997] Cook, S., and Mitchell, D. 1997. Finding hard instances
of the satisfiability problem: A survey. Proceedings of the DIMACS Workshop on
Satisfiability Problems 11-13.

[Crawford & Auton, 1993] Crawford, J., and Auton, L. 1993. Experimental results
on the cross-over point in satisfiability problems. In Proceedings of the Eleventh
National Conference on Artificial Intelligence, 21-27. Menlo Park, Calif.: AAAI
Press.

[Currie & Tate, 1991] Currie, K., and Tate, A. 1991. O-plan: the open planning
architecture. Artificial Intelligence 52(1):49-86.

[Ernst, Millstein, & Weld, 1997] Ernst, M., Millstein, T., and Weld, D. 1997. Au-
tomatic SAT-compilation of planning problems. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, 1169-1176. San Francisco,
Calif.: Morgan Kaufmann.

[Falkenhainer & Forbus, 1988] Falkenhainer, B., and Forbus, K. 1988. Setting up
large scale qualitative models. In Proceedings of the Seventh National Conference
on Artificial Intelligence, 301-306. Menlo Park, Calif.: AAAI Press.

[Gomes, Selman, & Kautz, 1998] Gomes, C., Selman, B., and Kautz, H. 1998. Boost-
ing combinatorial search through randomization. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, 431-437. Madison, WI: Menlo Park,
Calif.: AAAT Press.

[Hooker et al., 1999] Hooker, J., Ottosson, G., Thorsteinsson, E., and Kim, H. 1999.
On integrating constraint propagation and linear programming for combinatorial
optimization. In Proceedings of the Sizteenth National Conference on Artificial
Intelligence. Orlando, Florida: Menlo Park, Calif.: AAAI Press.

[Jaffar et al., 1992] Jaffar, J., Michaylov, S., Stuckey, P., and Yap, R. 1992. The
CLP(R) Language and System. ACM Transactions on Programming Languages
and Systems 14(3):339-395.

[Karloff, 1991] Karloff, H. 1991. Linear Programming. Boston: Birkhiuser.

[Kautz & Selman, 1996] Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, 1194-1201. Menlo Park, Calif.: AAAI
Press.

[Kautz & Selman, 1998] Kautz, H., and Selman, B. 1998. Blackbox: A new approach
to the application of theorem proving to problem solving. In AIPS98 Workshop
on Planning as Combinatorial Search, 58—60. Pittsburgh, Penn.: Carnegie Mellon
University.

[Kautz & Walser, 1999] Kautz, H., and Walser, J. 1999. State-space planning by inte-

ger optimization. In Proceedings of the Sizteenth National Conference on Artificial
Intelligence. Orlando, Florida: Menlo Park, Calif.: AAAT Press.

[Koehler et al., 1997) Koehler, J., Nebel, B., Hoffmann, J., and Dimopoulos, Y. 1997.
Extending planning graphs to an ADL subset. In Proceedings of the Fourth European
Conference on Planning, 273-285. Berlin, Germany: Springer-Verlag.

[Koehler, 1998] Koehler, J. 1998. Planning under resource constraints. In Proceedings
of the Thirteenth European Conference on Artificial Intelligence, 489-493. Chich-
ester, UK: John Wiley & Sons.

[Li & Anbulagan, 1997] Li, C., and Anbulagan. 1997. Heuristics based on unit prop-
agation for satisfiability problems. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence, 366—371. San Francisco, Calif.: Morgan
Kaufmann.

[Majercik & Littman, 1998] Majercik, S. M., and Littman, M. L. 1998. MAXPLAN:
a new approach to probabilistic planning. In Proceedings of the Fourth International
Conference on Artificial Intelligence Planning Systems, 86—93. Menlo Park, Calif.:
AAAT Press.

[McDermott, 1998] McDermott, D. 1998. PDDL — The Planning Domain Definition
Language. AIPS-98 Competition Committee, draft 1.6 edition.

[Nelson & Oppen, 1979] Nelson, G., and Oppen, D. C. 1979. Simplification by co-
operating decision procedures. ACM Transactions on Programming Languages and
Systems 1(2):245-257.

[Penberthy & Weld, 1994] Penberthy, J., and Weld, D. 1994. Temporal planning with
continuous change. In Proceedings of the Twelfth National Conference on Artificial
Intelligence. Menlo Park, Calif.: AAAIT Press.

[Saraswat, 1989] Saraswat, V. A. 1989. Concurrent Constraint Programming Lan-
guages. Ph.D. Dissertation, Carnegie-Mellon University, Computer Science Depart-
ment.

[Selman, Kautz, & Cohen, 1996] Selman, B., Kautz, H., and Cohen, B. 1996. Local
search strategies for satisfiability testing. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science 26:521-532.

[Selman, Kautz, & McAllester, 1997] Selman, B., Kautz, H., and McAllester, D. 1997.
Computational challenges in propositional reasoning and search. In Proceedings of
the Fifteenth International Joint Conference on Artificial Intelligence, 50-54. San
Francisco, Calif.: Morgan Kaufmann.

[Van Hentenryck, 1989] Van Hentenryck, P. 1989. Constraint Satisfaction in Logic
Programming. Cambridge, MA: MIT Press.

[Van Hentenryck, 1997] Van Hentenryck, P. 1997. Numerica: A modeling language for
global optimization. In Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence.

[Vossen et al., 1999] Vossen, T., Ball, M., Lotem, A., and Nau, D. 1999. On the
use of integer programming models in ai planning. In Proceedings of the Sizteenth
International Joint Conference on Artificial Intelligence. Stockholm, Sweden: San
Francisco, Calif.: Morgan Kaufmann.

[Wilkins, 1990] Wilkins, D. 1990. Can AI planners solve practical problems? Com-
putational Intelligence 6(4):232-246.

[Wolfman & Weld, 1999] Wolfman, S., and Weld, D. 1999. The LPSAT system and
its Application to Resource Planning. Technical Report 99-04-04, University of
Washington, Department of Computer Science and Engineering.

