
An Event Spacing Experiment

Anthony J. Winstanley Aurelien Garivier Mark R. Greenstreet∗

Abstract

Events in self-timed rings can propagate evenly spaced
or as bursts. By studying these phenomena, we obtain a bet-
ter understanding of the underlying dynamics of self-timed
pipelines, which is a necessary precursor to utilizing these
dynamics to obtain higher performance (see, e.g., [18]).
We show that standard bounded delay models are inade-
quate to discriminate between bursting and evenly spaced
behaviours and show that an extension of the Charlie Dia-
grams of [5] provides a framework for understanding these
phenomena. This paper describes our novel analytical ap-
proaches and the design and fabrication of a chip to test our
theoretical models.
Keywords: attractors, Charlie Diagrams, hysteresis, phase
transitions, self-timed rings, timing analysis.

1. Introduction

Consider a simple self-timed ring such as the one de-
picted in figure 1. Such rings are ubiquitous in self-timed
designs (e.g. [15, 12]), and their performance has been stud-
ied in many contexts. For example, [14] analyzed through-
put assuming each stage has a fixed time for each operation.
Self-timed rings with exponentially distributed processing
times were analyzed in [6]. Xie and Beerel have developed
tools that analyze general networks of self-timed proces-
sors for general probabilistic models [19, 20]. All of these
analyses have focused on the long-term throughput of the
self-timed network.

Although long-term throughput is an important measure,
the details of time separation between consecutive events
is also important. In particular, in most self-timed rings,
events occur in “bursts” as depicted in figure 2. This paper
reports on our efforts to understand the causes and implica-
tions of this bursting behaviour: Why do bursts occur? and
How can bursting behaviour be controlled?
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Figure 1. A Self-Timed Ring
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Figure 2. Burst and Evenly Spaced Events

While we believe that questions such as those asked
above are legitimate grounds for scientific inquiry in their
own right, we recognize that some readers are eager to see
a practical motivation for exploring such issues. If a self-
timed design uses bundled control, then the data-path must
be capable of operating at the minimum cycle times of the
burst. Long-term throughput, however, is typically deter-
mined by the average rate. Therefore, bursting behaviour
leads directly to lost performance. In another direction, we
are interested in the possibility of using self-timed pipelines
to implement delay lines. Unlike chains of simple buffers, a
self-timed pipeline will not drop pulses due to timing asym-
metries. On the other hand, if the pipeline clusters events
into bursts, then it fails to provide a predictable delay. As
yet another application, various researchers (e.g. [13]) have
proposed using self-timed pipelines to distribute clock sig-
nal – using the handshaking protocol to ensure that local
timing constraints are satisfied. The bursts of typical self-
timed rings correspond to a clock jitter far greater than can
be tolerated in high-performance synchronous design. Fi-
nally, we believe that a better understanding of the funda-



mental properties of self-timed circuits is a prerequisite to
discovering new applications for these designs.

This paper presents a framework for understanding tem-
poral properties of self-timed rings. In particular:

• In section 2, we describe why existing models are in-
adequate for understanding the bursting behaviours of
self-timed rings, and present a new model that qualita-
tively explains this phenomenon.

• In section 3, we characterize the transition between
bursting and evenly spaced behaviours. Namely, it is a
critical phase transition with hysteresis [11].

• In section 4, we use our model to design a self-timed
ring in which bursting can be controlled. We present a
CMOS implementation of this design.

• In order to test our model, we have designed, fabri-
cated, and tested a chip that implements our new de-
sign. (See section 5.) Our chip switches between burst
and evenly spaced behaviours according to the value
of an externally applied current reference.

• In section 6, we describe why our model is inadequate
to capture the quantitative details of the phase transi-
tion described above. From this, we infer properties
that a more accurate model must possess.

Our chip provides real, physical measurements for testing
our theory. These experiments confirm the nature of the
phase transition predicted by the model. They also reveal
unanticipated phenomena that motivate future research.

2. Models

The key to understanding the timing properties of self-
timed rings lies in finding an appropriate model. Circuit
simulators such as SPICE [10] use non-linear ordinary dif-
ferential equations (ODEs) to model the circuit, and numer-
ically integrate these equations to predict the circuit’s be-
haviour. These ODE models can be quite accurate, and they
correctly predict the burst behaviour that is observed by lab-
oratory measurements. However, these models are compli-
cated. In particular, the models for small rings have dozens
to hundreds of variables. Thus, whatever their virtues for
accuracy, ODE models are too detailed to provide insight
into the causes of burst behaviour and how it can be con-
trolled.

Another approach is to model the system as having dis-
crete values that change at instants in continuous time. This
is the approach taken by timed automata techniques such
as [9] and [21]. Close to our current problem, Amon and
Hulgaard [8, 1] have developed algorithms for computing

bounds on the separation of events given bounds on opera-
tion times. All of these models specify the range of possible
event times for each operation with an interval. Such mod-
els admit a wider range of behaviours than occur in prac-
tice. In particular, they show that bursts and evenly spaced
events are both admitted by the models, but they don’t pre-
dict which behaviour actually occurs.

Typical hardware delay models specify a delay after the
last input event that enables the change. Using such a
model, the time at which the output of a C-element changes,
tc is given by max(ta, tb) + δ, where ta is the time of the
change of the a input; tb is the time of the change of the
b input; and δ is some value with δmin ≤ δ ≤ δmax. Let
tc,max be the latest time at which an output may change. For
ta < tb, ∂

∂ta
tc,max = 0, and for ta > tb, ∂

∂ta
tc,max = 1. An

equivalent observation holds for ∂
∂ta

tc,min, and for deriva-
tives with respect to tb. The ODE models for circuits don’t
exhibit such discontinuities. To remain consistent with the
ODE models, the delay intervals of these traditional hard-
ware models must be fairly large. This is what makes them
too imprecise for our purposes.

More accurate delay models account for the effects of
closely spaced input events [2, 4] and intersymbol interfer-
ence [3]. As described in section 2.1, when enabling input
events are closely spaced, the delay from the last input event
to the resulting output event is greater than when the input
events are more widely separated. In [2], Chandramouli and
Sakallah model closely spaced input events with a function
that applies a correction term to a delay model for a single
enabling event. However, their model lacks the continu-
ity of the models that we present below. In particular, for
large separations, Chandramouli and Sakallah’s model as-
sumes that the effect of the earlier signal on the output time
is negligible. Our experiments show that even very small
dependencies can be critical in determining whether a ring
has evenly spaced or clustered events.

When we started this research, we conjectured that burst-
ing behaviour is caused by the intersymbol interference that
occurs due to the time that it takes to charge the output
capacitance of the C-elements. Recognizing that Charlie
Diagrams as described in [5] provided the continuity that
would be needed in any model that would explain bursting
behaviour, we decided to extend these diagrams to model
the dependence of delay on the time since the last output
event. In the remainder of this section, we sketch the orig-
inal Charlie Diagram model and then describe how we ex-
tended it.

2.1. The 2D Charlie Diagram

Recognizing that output delay depends on the relative
arrival times of the input events to a multiple input gate,
Charlie Diagrams measure the output delay of a gate from
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Figure 3. A Charlie Diagram

the average of the arrival times of the input events [5]. For
a two-input gate, this delay is parameterized by the half-
difference of the arrival times:

tc = m + Charlie(s)
where:

m = (ta + tb)/2
s = (ta − tb)/2

(1)

Figure 3 shows a typical Charlie Diagram. The curve
of Charlie(s) versus s resembles a hyperbola. For large
separations of the input events, the output time approaches
the time of the last input plus some constant. Thus, the
Charlie Diagram has asymptotes with slopes of ±1.

Figure 4 shows an implementation of a stage of the self-
timed ring from figure 1. The forward delay of stage i is the
time from receiving an event on signal x[i-1] until producing
an event on x[i]. Likewise, the reverse delay is the time
to propagate an event on x[i+1] to x[i]. Using the Charlie
Diagram notation, we obtain:

δF = tc − ta = Charlie(s) − s, fwd. delay
δR = tc − tb = Charlie(s) + s, rev. delay

(2)

We now examine how the curve of a Charlie Diagram
approaches the asymptotes. Consider a scenario where both
a and b make low-to-high transitions, and a changes af-
ter b. If a changes a long time after b, then the p-channel
transistor controlled by b will be in its cut-off region, and
the n-channel transistor controlled by b will be fully con-
ducting as a changes. Furthermore, the node between the
two n-channel transistors will be close to ground potential.
This allows a relatively fast transition on signal q and there-
fore on the output c. On the other hand, if a changes only
slightly after b, then the transistors controlled by b will

x[i+1] = b

x[i-1] = a q
x[i] = c

Figure 4. A Ring Stage

both be partially conducting as a changes. This results in
a greater delay from the transition of a to the transition of
c. Similar effects occur if a changes before b. These are the
simultaneous switching effects described in [4, 2].

The dependence of output delay on relative arrival times
described above is reflected in the curve of the Charlie
Diagram approaching the asymptotes monotonically from
above. Returning to the scenario where input a changes af-
ter b, we note that the delay from an event at input a to
an event at output c is the forward delay, Charlie(s) − s.
If input a changes a long time after b, then s is large and
positive, and the forward delay is small. Conversely, if a
changes only slightly after b, then s is smaller, and the for-
ward delay increases. Because the dependence of gate delay
on the relative arrival time of the input events is naturally
modeled by Charlie Diagrams, we call this dependence the
“Charlie Effect”.

In section 3.3, we show that the monotonicity with which
the curve of a Charlie Diagram approaches its asymptotes
implies that events in the ring are evenly spaced. In prac-
tice, most self-timed rings produce bursts of events. There-
fore, we extend the model to include another important phe-
nomenon: the dependence of output delay on the time since
the previous output event.

2.2. The Drafting Effect

We extend the Charlie Diagram to model the effects of
the output capacitance of the gate. Due to this capacitance,
output transitions are not instantaneous. Instead, the volt-
age of the output asymptotically approaches the level of the
power supply or ground. If input events are closely spaced,
then the output of the gate will still be a significant distance
from the power or ground rail when a new transition occurs.
This allows subsequent transitions to occur faster than in the
case where the output has reached a value closer to the rail.
We call this phenomenon “drafting,” after the practice of bi-
cyclists to ride in closely spaced lines to reduce wind drag.
Just as the lead cyclist reduces the work required of those
behind her, the lead token in a burst allows subsequent to-
kens to propagate with reduced delay. The handshake pro-
tocol prevents trailing tokens from overtaking earlier ones

3
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Figure 5. “Drafting”

(fear serves an equivalent purpose for bicyclists). As an ex-
ample, figure 5 shows the time from an input event to the
corresponding output event for our FIFO stage as a function
of the input period. In this example, both inputs of the FIFO
change simultaneously.

We model drafting by extending the Charlie Diagram to
three dimensions. As with the original Charlie Diagram,
the time separation of the input events is drawn along one
axis of the domain. The other domain axis is the time from
the last output event to the mean of the input event times.
Figure 6 shows such a Charlie Diagram.

3. Analysis

In this section, we sketch our analytical results for char-
acterizing whether events are evenly spaced or bursting. A
more detailed analysis can be found in [16, 17].

3.1. The unique forward delay assumption

To improve our intuition, we constructed a family of syn-
thetic Charlie Diagrams. We employed a hyperbolic depen-
dence of delay on input separation because it was simple,
and we used a negative-exponential dependence on the time
since the last output event corresponding to the behaviour
of an RC circuit (or the asymptotic behaviour of a transistor
charging a capacitor). This model is given by

u(s) = 1 +
√

1 + (s + 0.1)2

Charlie(s, y) = u(s) + β(1 − e−α(y+u(s)))
(3)

where y is the time from the last input event to the aver-
age of the arrival times of the input events. The expression
for u(s) describes a fixed hyperbola with the 0.1 offset on

−5

0

5

0
2

4
6

8
10
2

3

4

5

6

7

8

9

10

s = (input separation)/2
y = (mean input time) − (last event time)

   
(o

ut
pu

t d
el

ay
 fr

om
 m

ea
n)

/2

Charlie(s, y)

   

Figure 6. A 3-Dimensional Charlie Diagram

s reflecting that real C-elements are not symmetrical with
respect to their two inputs. In this model, the parameter α
gives the time constant for the negative exponential drafting
term, and parameter β gives the strength of the drafting ef-
fect. By varying the values of these parameters, we could
obtain clustering or evenly-spaced behaviours. Figure 6 cor-
responds to this model with α = 0.2 and β = 3.0.

For both clustering and evenly spaced events, we ob-
served that δF was the same for all events in rings that
were token limited, and δR was the same for all events in
rings that were bubble limited. We strongly suspect that
any “reasonable” Charlie Diagram will exclude steady state
behaviours that don’t have either a unique forward delay for
all actions or a unique reverse delay, but we do not yet have
a proof for this conjecture. In the following, we will assume
a token limited ring, and write δ∗

F for the unique forward de-
lay of all events. When events clumped in bursts, the first
event in the burst had a large reverse delay, δR0, correspond-
ing to the interval between the last event of one burst and the
first event of the next. The other events of the burst had ex-
actly the same reverse delay, δR1, with δR1 < δR0. When
events were evenly spaced, δR0 = δR1.

3.2. Classifying the ring’s behaviour

Let tlast and tnext be the time of any two consecu-
tive events at stage i. We exploit two ways to compute
tnext − tlast. Writing m to denote the average of the input
arrival times, the definitions of y and Charlie(s, y) yield:
y = m − tlast, and Charlie(s, y) = tnext − m. We con-
clude: tnext − tlast = y + Charlie(s, y). Now we note that
stage i + 1 transitions δ∗F time units after tlast, and that tnext

occurs δR later; thus: tnext − tlast = δ∗F + δR. Adding
the parts of equation 2 yields δ∗

F + δR = 2Charlie(s, y).

4
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Figure 7. Charliey(s), high drafting

We conclude: Charlie(s, y) = y. Graphically, we intersect
the surface of a three-dimensional Charlie Diagram with the
Charlie(s, y) = y plane to obtain a curve that includes the
operating points of any burst or evenly spaced equilibrium.
We write Charliey(s) to denote this curve. In the remainder
of this section, we restrict our attention to the Charliey(s)
curve.

Given that all events have the same forward delay, the
operating point(s) for any steady state solution must lie on
the line Charliey(s) = s + δ∗F . If ∂Charliey(s)/∂s < 1
at the point of intersection, then that intersection is a stable
attractor. On the other hand, if ∂Charliey(s)/∂s > 1, then
the point of intersection is unstable.

Let nT denote the number of tokens in a ring and nB

the number of bubbles. Balancing token and bubble flow
yields:

nBδ∗F − δR0 − (nT − 1)δR1 = 0 (4)

Noting that δR0 and δR1 are determined by δ∗
F , the Charlie

Diagram, and the y = Charlie(s, y) constraint, we solve
for δ∗F in equation 4 using standard root finding techniques.
In the case of evenly spaced events, δR1 = δR0, from which
we derive:

Charliey(y) =
nT + nB

nT − nB
s (5)

The above observations yield the following procedure
for classifying the timing behaviour of a self timed ring:

1. Find the curve Charliey(s) by intersecting the surface
of the Charlie Diagram with the Charlie(s, y) = y
plane.

2. Compute the intersection of Charliey(s) with the line
Charliey(s) = ((nT +nB)/(nT−nB))s. If such inter-
sections exist, then the one with ∂Charliey(s)/∂s < 1
is stable, and evenly spaced. All solutions for figure 8,
and the left intersection for the lower dashed line in
figure 7 depict stable, evenly spaced solutions.
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Figure 8. Charliey(s), low drafting

3. Determine max(∂Charliey(s)/∂(s)). If this value is
greater than one (see figure 7), then burst behaviours
are possible. If it is less than one (see figure 8), then
burst behaviours are excluded.

4. If burst behaviours are possible, find the feasible val-
ues of δ∗F by solving equation 4. If there is a solution
with δR0 �= δR1 where ∂Charliey(s)/∂(s) < 1 at both
points, then the ring has stable, burst behaviours.

3.3. 2D Charlie Diagrams predict evenly spaced
events

Any 2D Charlie Diagram can be represented by a 3D
Charlie Diagram where Charlie(s, y) is independent of y,
the time since the last event. In this case, the curve for
Charlie(s, y) = y is just the original 2D Charlie Diagram.
The slope of the right asymptote of the Charlie Diagram is
one. If the curve of the Charlie Diagram approaches this
asymptote monotonically from above, then the slope of the
curve is always less than one. By the arguments above, this
implies evenly spaced behaviour.

4. A Ring with Controlled Event Spacing

With the explanations and analysis of clustering be-
haviour from the previous sections, we set out to design a
ring stage that produces evenly spaced events. We started
with the family of simple Charlie Diagrams given by equa-
tion 3 studying the behaviour as α and β vary. For example,
with α = 0.2, evenly spaced events are the only stable be-
haviour for β < 0.63; for 0.63 < β < 1.18, both evenly
spaced and burst are stable; and with β > 1.18, only the
burst behaviour is stable. We conclude that the system ex-
hibits critical phase transitions between evenly spaced and
bursts: the behaviour snaps from one to the other when the
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Figure 9. Cancelling Drafting with Feedback

critical value is crossed. Furthermore, the system has hys-
teresis: for 0.63 < β < 1.18, both behaviours are stable.
If the system enters this region from the evenly spaced side
(β < 0.63) then it will continue to exhibit evenly spaced
behaviour in this region. On the other hand, if the system
enters this region from the burst side (β > 1.18), it will con-
tinue to exhibit burst behaviour. The attractors in the model
are structurally stable: they hold in an open set of parame-
ter values. [7, chap.16.3] This means that a circuit with the
same qualitative dynamics will exhibit the same structural
stability. In particular, achieving evenly spaced behaviour
does not require exact matching of the circuit parameters or
device sizes across the ring stages.

Having identified drafting as the cause of event clus-
tering, we sought to design an “anti-drafting” mechanism.
Drafting occurs because the output of the C-element
asymptotically approaches the power supply rails, thus
monotonically increasing the distance for the next tran-
sition. Our innovation is to make the output “bounce”
instead. Using a small amount of negative feedback, the
output settles to values that are slightly inside the rails.
If this feedback is suitably delayed, then the output will
overshoot this target and then asymptotically approach it.
Figure 9 shows this approach where the dashed line is the
C-element output without feedback, and the solid line is
the output with negative feedback. The feedback causes the
delay for the next event to decrease as the time since the
last event increases. With a sufficient bounce, this cancels
the drafting effect, and produces evenly spaced events.

We now have our hypotheses:

H1: Bursting behaviour is due to drafting. Negative feed-
back can cancel drafting and produce evenly spaced
events.

H2: If the amount of drafting can be controlled (e.g.
by controlling the strength of the negative feedback
above), then the ring will exhibit critical phase transi-
tions with hysteresis between evenly spaced and burst-
ing modes of operation.

c
n2

b

a

p1

p2

n1

i1

i2

i3
i4

i5

i6

q

Figure 10. A Ring Stage With Feedback

H3: The evenly spaced and bursting modes are structurally
stable. For either mode, there exists a region of oper-
ation where the mode is robust against small perturba-
tions such as variations in the strength of the feedback,
the circuit parameters, or the operating conditions. In
particular, bursting is not a consequence of electrical
mismatches between stages.

H4: 3D Charlie Diagrams provide an accurate model for
classifying the temporal properties of events in self-
timed rings.

To test these hypotheses, we designed, fabricated, and tested
a chip.

5. A Test Chip

5.1. Negative Feedback

The first task of our design was to design a ring stage that
used negative feedback as an “anti-drafting” mechanism.
Our first approach was to attach a three inverter ring to the
output of a FIFO stage as shown in figure 10. In this design,
transistors n1, n2, p1, and p2 form a dynamic, inverting C-
element. Inverter i2 buffers the output of the C-element,
and inverter i3 is a keeper. Inverter i1 provides an inverted
input for the acknowledgment from the successor stage. In-
verters i4, i5, and i6 provide the negative feedback with a
delay. Inverter i2 is designed to be much stronger than i6.
When inverter i2 switches, i6 is initially pulling the same
direction and accelerates the transition. After this transi-
tion propagates through inverters i4 and i5, inverter i6 pulls
against i2, moving the level on node c slightly away from
the power supply rail. This creates the bounce described in
the previous section.

HSPICE simulations showed that this design failed
to prevent bursting behaviour regardless of the relative
strengths of inverters i2 and i6. We tried to understand this
by creating 3D Charlie Diagrams from HSPICE simulation

6
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data. However, the surface was flat to within the numerical
resolution of HSPICE in the regions of interest. We were
forced to think instead of simulate. We realized that while
the bounce decreases the drafting effect, it also reduces the
swing of the signal that is supplied to the next stage causing
the transistors in the next stage to be less than fully conduct-
ing. This negated the Charlie-effect, and events remained
clustered. Here, the intuition from the Charlie-Diagram
helped us to diagnose the problem and realize that it could
not be solved by methods such as adjusting transistor sizes.

Our solution, as shown in figure 11, is to apply the neg-
ative feedback to node q of the C-element. This required
some care to avoid spurious transitions. Between transi-
tions, node q can be driven by the keeper only, and our
feedback circuit must not overpower the keeper. Our so-
lution was to use a “crummy buffer” with an n-channel
pull-up and a p-channel pull-down. With this arrangement,
the n-channel pull-up of the crummy buffer fights the n-
channel pull-down of the keeper. As both transistors are
n-devices, the matching of their relative strengths is fairly
robust against parameter variations, variations in operating
voltage or temperature, etc. Likewise, the p-channel pull-
down in the crummy buffer fights the p-channel pull-up of
the keeper. We found that matching the sizes of the transis-
tors in the crummy buffer to those in the keeper provided
excellent matching over the entire range of process parame-
ters. In figure 11, all P-channel devices have a shape factor
twice that of the N-channel devices. Devices marked “/8”
indicate transistors with 1/8 the width of the others.

Finally, we placed current limiting transistors in series
with the crummy buffer’s pull-up and pull down. We bias
these transistors from a current mirror that is regulated by
an external current reference. This allows us to experiment
with the strength of the feedback.

Figure 12 shows the time intervals between successive
transitions of the first C-element for a ring with 15 stages
initialized to hold 6 tokens (i.e. 3 pulses). The data was ob-
tained from HSPICE simulations. At the beginning of the
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Figure 12. Burst → Evenly Spaced

counter
mod 4n

serial_in

S
R

serial_out

Q
Vdd

s_in

downclock downdata

probe

Stage probe points

Gnd

30 Stage Ring

resetrun

cm

run

I_ref

sync

Figure 13. The Test Chip

simulation, the reference current was 0, and the ring oper-
ated with bursts of events. With 6 tokens, these bursts have
2 short output cycles, and one long output cycle. Figure 12
shows what happens when the current is increased to some
critical value: all the measured distances become equal, and
the ring switches into evenly spaced mode.

When we decrease the current back to 0, the ring re-
mained evenly spaced in HSPICE simulation. It appeared
that positive feedback was required to switch the circuit
back to burst mode, something outside the range of the
present design. As we describe shortly in section 5.3, the
fabricated chip exhibits both critical transitions. This dis-
crepancy between HSPICE simulation and the real chip re-
mains to be explained.

5.2. The Chip

We implemented a chip with a thirty stage ring with a
stage design based on the one presented in the previous
section. In addition to the feedback mechanism described
above, we added several other features to each stage to fa-
cilitate testing our hypotheses:

• We introduced a programmable asymmetry into the
ring stage. In parallel with the inverter that drives node
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c, we placed an inverting tri-state buffer. We added a
serial register with one bit per ring stage. When this bit
is true, the buffer is enabled, when false, it is disabled.
This allows us to selectively alter the output delay of
the ring stages.

• We added a loading mechanism to set the number of
tokens in the ring. A reset signal forces all stage out-
puts to false. The first stage of the ring includes a mul-
tiplexor so that it can receive its forward input from
the last stage of the ring or from an external input. To
maintain matching of the stages, the other stages in-
clude an equivalent multiplexor with the control input
set to always accept the output of the previous stage.

After resetting the ring, we load the desired number of
tokens into the ring. The ring starts running when the
multiplexor is set to close the ring. A side-effect of this
mechanism is that the ring always starts with its events
clumped in a burst.

• We added probe points to each stage. These were
chains of three buffers from node c of each stage, cul-
minating with a 50Ω driver. One of these drivers was
connected to a bonding pad. The driver for each stage
can be probed using a micro-manipulator probe.

Figure 13 shows the block diagram for the chip. To work
with an existing probe card for small designs, the chip has
eight pads that we multiplexed to provide the functional-
ity that we wanted. When the chip is reset, tokens are
loaded into the ring, and the serial configuration registers
are loaded. The ring starts running when the run signal goes
high. In addition to the ring, we included a programmable
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Figure 15. I ref = 200µA: Evenly Spaced
Events

divider to output a lower frequency sync pulse for oscillo-
scopes and other test instruments. By setting the modulus
of this counter to a multiple of the number of tokens in the
ring, we obtain a strobe that works effectively with either
bursting or evenly spaced events.

5.3. Test Results

We fabricated our design using the Canadian Microelec-
tronics Corporation’s 0.35µ process. We made measure-
ments on the fabricated chip to test the hypotheses advanced
in section 4.

Our first hypothesis states that evenly spaced events can
be achieved through the use of negative feedback. We
loaded the ring with 12 tokens (i.e. pulses, one event for
each rising edge and one for each falling). This ensured
token limited operation. As shown in figure 14 when the
chip was operated with I ref = 0µA, the ring operated with
bursting events, as predicted by the model. Figure 15 shows
operation with I ref = 200µA, where we observed evenly
spaced events. Thus, sufficient negative feedback produced
evenly spaced events as predicted by our model.

The duty cycles observed in figures 14 and 15 reflect the
asymmetric rise and fall times of C elements. Furthermore,
these figures show signs of VDD modulation caused by the
strobe output of the on-chip counter driving a 50Ω load.

Our second hypothesis is that the ring should exhibit crit-
ical phase transitions between bursting and evenly spaced
events, and that these transitions should exhibit hysteresis.
Our HSPICE simulations indicated that we should only be
able to observe the bursting to evenly spaced transition. We
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again loaded the ring with 12 tokens, started the ring with
I ref = 0µA, and gradually increased I ref. The ring oper-
ated with bursting events, gradually increasing in frequency.
When I ref reached 132µA, operation snapped to evenly
spaced events. In other words, the events did not gradually
become more evenly spaced with increasing I ref. This con-
firms the critical phase transition predicted by the model.

When I ref was decreased again, we observed a transi-
tion back to bursting events at I ref = 107µA. While this
disagrees with our HSPICE simulations, it is in accordance
with the prediction of our 3D Charlie Diagram models that
indicates that the phase transition should exhibit hysteresis.

We also observed that when the ring was in bursting
mode with 107µA < I ref < 132µA, the burst became less
stable. In particular, the trailing pulse of the burst would oc-
casionally fall back around the ring and become the leading
pulse. We don’t know why this occurs. We are particularly
intrigued that this phenomenon occurs at the same refer-
ence current, to within the resolution of our measurements,
as the current for the critical transition from evenly spaced
to bursting. In other words, this bursting appears to coincide
exactly with the feasibility of evenly spaced behaviour. The
evenly spaced mode appears to be completely stable without
anomalies for all values of I ref above 107µA. We suspect
that the instability of the bursting mode may be related to
noise in the circuit that was not included in our HSPICE
models, but we have no data for testing this conjecture.

Our third hypothesis is that bursting and evenly spaced
behaviours are structurally stable. We repeated our experi-
ments with one stage set to operate with a slow output buffer
and the other 29 stages set to operate with fast buffers. The
results measured were equivalent to those with all buffers
fast. This indicates that bursting and evenly spaced be-
haviours are structurally stable as predicted by our model:
they are not artifacts of asymmetries in the ring.

6. Limitations of Charlie Diagrams

We return to Charlie Diagrams to evaluate our fourth hy-
pothesis: 3D Charlie Diagrams provide an accurate model
for classifying the temporal properties of events in self-
timed rings. We clearly found 3D Charlie Diagrams useful
for designing our test chip, and the test results agree qualita-
tively with the model. As mentioned in section 5, numerical
limitations of HSPICE prevented us from using 3D Charlie
Diagrams as a quantitative tool while designing the chip.

We sought to remedy this problem by integrating the
Jacobian matrix (i.e. the partial derivatives) for the ODE
model along with the circuit state. From this integrated Ja-
cobian, we could infer the tangent surface to the 3D Char-
lie Diagram at each data point. These tangent surfaces
would allow us to perform the classification described in
section 3.2.

As HSPICE does not provide the numerical hooks for
this calculation, we chose Matlab for this experiment and
started with a highly simplified, ODE model of a C-element
that exhibited bursts when used in a ring. We constructed
the 3D Charlie Diagram for this simplified model, and much
to our shock, it predicted evenly spaced events. On closer
examination, the culprit turned out to be the shape of the in-
put waveforms that we applied to the C-elements. When we
performed a fix point iteration to ensure that the input wave-
forms had the same shape as the output waveforms, then
the Charlie Diagrams made the correct prediction. Unfortu-
nately, this is roughly equivalent to simulating each possible
ring configuration and offers little predictive value.

Further numerical experiments showed that the classifi-
cation of bursting versus evenly spaced behaviours is fairly
sensitive to the shapes of the waveforms. Simply know-
ing the delays from 50% transition points is not sufficient.
This suggests that any model based on lumped delays is
inadequate to make quantitative predictions about steady-
state event spacings. On the other hand, both bursting and
evenly spaced behaviours appear to be very robust. They
persist over wide variations in process parameters, changes
in circuit topologies, and large variations between individ-
ual stages in the ring. Thus, we strongly suspect that there
should be a simple abstraction that captures these robust
behaviours and makes accurate, quantitative predictions.
Finding such a model is a topic for future research.

7. Conclusions

We have designed and implemented the first documented
and published design for a self-timed ring that exhibits uni-
form spacing of events. Our design uses negative feedback
to cancel the effects of drafting, the dependence of switch-
ing delay on the time since the previous output event. By
varying the strength of this feedback, we can evoke bursting
or evenly spaced behaviours. The transition between these
two modes is a critical phase transition with hysteresis.

We developed and used 3D Charlie Diagrams for our
qualitative analysis. These diagrams correctly identified
drafting as the cause of bursting events; they correctly clas-
sified the nature of the phase transition; and they provided
critical insight into how to design real circuits where the
event spacing can be controlled. The quantitative details of
event spacing depends on not only the times of signal tran-
sitions but also the shapes of the waveforms during these
transitions. The Charlie Diagram abstraction neglects de-
tails of waveform shape. Therefore, some other model is
needed to capture quantitative details of event spacing. The
challenge remains to find a model that is detailed enough to
provide quantitative accuracy while retaining the simplicity
that is suggested by the apparent robustness of the burst and
evenly spaced modes.
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Measurements on real, physical artifacts are essential to
establishing the validity of theoretical models. Accordingly,
we implemented a chip to test the hypotheses that we made
based on our model. The chip’s behaviour transitions be-
tween bursting and evenly spaced events according to the
value of an externally applied reference current. This tran-
sition exhibits a critical phase transition with hysteresis as
predicted by the model. In the hysteresis region, the burst-
ing mode shows an instability that is not predicted by the
Charlie Diagrams, nor was it predicted by HSPICE simula-
tions. We suspect that it is somehow noise related, but we
are intrigued that it occurs only in the region where both
bursting and evenly spaced behaviours are allowed.

By performing these experiments, we have obtained
a deeper understanding of the operation of self-timed
pipelines. We expect that this knowledge will lead to novel
applications of self-timed circuits, especially in applications
where timing details are critical. We also hope that the ques-
tions raised by our experiments will lead to further research
and a better understanding of the dynamics of self-timed
circuits and systems.
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