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ABSTRACT

Deep reinforcement learning has demonstrated increasing capabilities for con-
tinuous control problems, including agents that can move with skill and agility
through their environment. An open problem in this setting is that of develop-
ing good strategies for integrating or merging policies for multiple skills, where
each individual skill is a specialist in a specific skill and its associated state dis-
tribution. We extend policy distillation methods to the continuous action setting
and leverage this technique to combine expert policies, as evaluated in the do-
main of simulated bipedal locomotion across different classes of terrain. We also
introduce an input injection method for augmenting an existing policy network
to exploit new input features. Lastly, our method uses transfer learning to assist
in the efficient acquisition of new skills. The combination of these methods al-
lows a policy to be incrementally augmented with new skills. We compare our
progressive learning and integration via distillation (PLAID) method against three
alternative baselines.

1 INTRODUCTION

As they gain experience, humans develop rich repertoires of motion skills that are useful in differ-
ent contexts and environments. Recent advances in reinforcement learning provide an opportunity
to understand how motion repertoires can best be learned, recalled, and augmented. Inspired by
studies on the development and recall of movement patterns useful for different locomotion con-
texts (Roemmich & Bastian, 2015), we develop and evaluate an approach for learning multi-skilled
movement repertoires. In what follows, we refer to the proposed method as PLAID: Progressive
Learning and Integration via Distillation.

For long lived applications of complex control tasks a learning system may need to acquire and
integrate additional skills. Accordingly, our problem is defined by the sequential acquisition and
integration of new skills. Given an existing controller that is capable of one-or-more skills, we wish
to: (a) efficiently learn a new skill or movement pattern in a way that is informed by the existing
control policy, and (b) to reintegrate that into a single controller that is capable of the full motion
repertoire. This process can then be repeated as necessary. We view PLAID as a continual learning
method, in that we consider a context where all tasks are not known in advance and we wish to
learn any new task in an efficient manner. However, it is also proves surprisingly effective as a
multitask solution, given the three specific benchmarks that we compare against. In the process of
acquiring a new skill, we also allow for a control policy to be augmented with additional inputs,
without adversely impacting its performance. This is a process we refer to as input injection.

Understanding the time course of sensorimotor learning in human motor control is an open research
problem (Wolpert & Flanagan, 2016) that exists concurrently with recent advances in deep rein-
forcement learning. Issues of generalization, context-dependent recall, transfer or ”savings” in fast
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learning, forgetting, and scalability are all in play for both human motor control models and the
learning curricula proposed in reinforcement learning. While the development of hierarchical mod-
els for skills offers one particular solution that supports scalability and that avoids problems related
to forgetting, we eschew this approach in this work and instead investigate a progressive approach
to integration into a control policy defined by a single deep network.

Distillation refers to the problem of combining the policies of one or more experts in order to create
one single controller that can perform the tasks of a set of experts. It can be cast as a supervised
regression problem where the objective is to learn a model that matches the output distributions of
all expert policies (Parisotto et al., 2015; Teh et al., 2017; Rusu et al., 2015). However, given a new
task for which an expert is not given, it is less clear how to learn the new task while successfully
integrating this new skill in the pre-existing repertoire of the control policy for an agent. One well-
known technique in machine learning to significantly improve sample efficiency across similar tasks
is to use Transfer Learning (TL) (Pan & Yang, 2010), which seeks to reuse knowledge learned
from solving a previous task to efficiently learn a new task. However, transferring knowledge from
previous tasks to new tasks may not be straightforward; there can be negative transfer wherein a
previously-trained model can take longer to learn a new task via fine-tuning than would a randomly-
initialized model (Rajendran et al., 2015). Additionally, while learning a new skill, the control policy
should not forget how to perform old skills.

The core contribution of this paper is a method Progressive Learning and Integration via Distillation
(PLAiD) to repeatedly expand and integrate a motion control repertoire. The main building blocks
consist of policy transfer and multi-task policy distillation, and the method is evaluated in the context
of a continuous motor control problem, that of robust locomotion over distinct classes of terrain.
We evaluate the method against three alternative baselines. We also introduce input injection, a
convenient mechanism for adding inputs to control policies in support of new skills, while preserving
existing capabilities.

2 RELATED WORK

Transfer learning and distillation are of broad interest in machine learning and RL (Pan & Yang,
2010; Taylor & Stone, 2009; Teh et al., 2017). Here we outline some of the most relevant work in
the area of Deep Reinforcement Learning (DRL) for continuous control environments.

Distillation Recent works have explored the problem of combining multiple expert policies in
the reinforcement learning setting. A popular approach uses supervised learning to combine each
policy by regression over the action distribution. This approach yields model compression (Rusu
et al., 2015) as well as a viable method for multi-task policy transfer (Parisotto et al., 2015) on
discrete action domains including the Arcade Learning Environment (Bellemare et al., 2013). We
adopt these techniques and extend them for the case of complex continuous action space tasks and
make use of them as building block.

Transfer Learning Transfer learning exploits the structure learned from a previous task in learn-
ing a new task. Our focus here is on transfer learning in environments consisting of continuous
control tasks. The concept of appending additional network structure while keeping the previous
structure to reduce catastrophic forgetting has worked well on Atari games (Rusu et al., 2015;
Parisotto et al., 2015; Rusu et al., 2016; Chen et al., 2015) Other methods reproduce data from
all tasks to reduce the possibility of forgetting how to perform previously learned skills e.g, (Shin
et al., 2017; Li & Hoiem, 2016). Recent work seeks to mitigate this issue using selective learning
rates for specific network parameters (Kirkpatrick et al., 2017). A different approach to combin-
ing policies is to use a hierarchical structure (Tessler et al., 2016). In this setting, previously-learned
policies are available as options to execute for a policy trained on a new task. However, this approach
assumes that the new tasks will be at least a partial composition of previous tasks, and there is no
reintegration of newly learned tasks. A recent promising approach has been to apply meta-learning
to achieve control policies that can quickly adapt their behaviour according to current rewards (Finn
et al., 2017). This work is demonstrated on parameterized task domains. The Powerplay method
provides a general framework for training an increasingly general problem solver (Schmidhuber,
2011; Srivastava et al., 2012). It is based on iteratively: inventing a new task using play or inven-
tion; solving this task; and, lastly, demonstrating the ability to solve all the previous tasks. The last
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two stages are broadly similar to our PLAID approach, although to the best of our knowledge, there
are no experiments on motor control tasks of comparable complexity to the ones we tackle. In our
work, we develop a specific progressive learning-and-distillation methodology for motor skills, and
provide a detailed evaluation as compared to three other plausible baselines. We are specifically
interested in understanding issues that arise from the interplay between transfer from related tasks
and the forgetting that may occur.

Hierarchical RL further uses modularity to achieve transfer learning for robotic tasks (Tessler
et al., 2016) This allows for the substitution of network modules for different robot types over a
similar tasks (Devin et al., 2017). Other methods use Hierarchical Reinforcement Learning (HRL)
as a method for simplifying a complex motor control problem, defining a decomposition of the
overall task into smaller tasks (Kulkarni et al., 2016; Heess et al., 2016; Peng et al., 2017) While
these methods examine knowledge transfer, they do not examine the reintegration of policies for
related tasks and the associated problems such as catastrophic forgetting. Recent work examines
learned motions that can be shaped by prior mocap clips (Merel et al., 2017), and that these can then
be integrated in a hierarchical controller.

3 FRAMEWORK

In this section we outline the details of the Reinforcement Learning (RL) framework. We also give
an introduction to the concepts of TL and distillation.

3.1 REINFORCEMENT LEARNING

Leveraging the framework of reinforcement learning, we frame the problem as a Markov Decision
Processes (MDP): at each time step t, the world (including the agent) is in a state st ∈ S, wherein
the agent is able to perform actions at ∈ A, sampled from a policy π(st, at) = p(at|st) and resulting
in state st+1 ∈ S according to transition probabilities T (st, at, st+1). Performing action at from
state st produces a reward rt; the expected cumulative reward earned from following some policy π
may then be written as:

J(π) = Er0,...,rT

[
T∑
t=0

γtrt

]
(1)

where T is the time horizon, and γ is the discount factor, defining the planning horizon length.

The agent’s goal is to learn an optimal policy, π∗, maximizing J(π). If the policy has parameters
θπ , then the goal may be reformulated to identify the optimal parameters θ∗π:

θ∗π = arg max
θπ

J(π(·|θπ)) (2)

Our policy models a Gaussian distribution with a mean state dependent mean, µθt(st). Thus, our
stochastic policy may be formulated as follows:

at ∼ π(at | st, θπ) = N (µ(st | θµ),Σ) Σ = diag{σ2
i } (3)

where Σ is a diagonal covariance matrix with entries σ2
i on the diagonal, similar to (Peng et al.,

2017).

To optimize our policy, we use stochastic policy gradient methods, which are well-established family
of techniques for reinforcement learning (Sutton et al., 2000). The gradient of the expected reward
with respect to the policy parameters,∇θπJ(π(·|θπ)), is given by:

∇θπJ(π(·|θπ)) =

∫
S

dθ(s)

∫
A

∇θπ log(π(a, s|θπ))Aπ(s, a) da ds (4)

where dθ =
∫
S

∑T
t=0 γ

tp0(s0)(s0 → s | t, π0) ds0 is the discounted state distribution, p0(s) rep-
resents the initial state distribution, and p0(s0)(s0 → s | t, π0) models the likelihood of reaching
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state s by starting at state s0 and following the policy π(a, s|θπ) for T steps (Silver et al., 2014).
Aπ(s, a) represents an advantage function (Schulman et al., 2016). In this work, we use the Positive
Temporal Difference (PTD) update proposed by (Van Hasselt, 2012) for Aπ(s, a):

Aπ(st, at) = I [δt > 0] =

{
1, δt > 0

0, otherwise
(5)

δt = rt + γVπ(st+1)− Vπ(st) (6)

where Vπ(s) = E
[∑T

t=0 γ
trt | s0 = s

]
is the value function, which gives the expected discounted

cumulative reward from following policy π starting in state s. PTD has the benefit of being insen-
sitive to the advantage function scale. Furthermore, limiting policy updates in this way to be only
in the direction of actions that have a positive advantage has been found to increase the stability
of learning (Van Hasselt, 2012). Because the true value function is unknown, an approximation
Vπ(· | θv) with parameters θv is learned, which is formulated as the regression problem:

minimize E
st,rt,st+1

[
1

2
(yt − Vπ(s | θv))2

]
, yt = rt + γVπ(st+1 | θv) (7)

3.2 POLICY DISTILLATION

Given a set of expert agents that have solved/mastered different tasks we may want to combine
the skills of these different experts into a single multi-skilled agent. This process is referred to as
distillation. Distillation does not necessarily produce an optimal mix of the given experts but instead
tries to produce an expert that best matches the action distributions produced by all experts. This
method functions independent of the reward functions used to train each expert. Distillation also
scales well with respect to the number of tasks or experts that are being combined.

3.3 TRANSFER LEARNING

Given an expert that has solved/mastered a task we want to reuse that expert knowledge in order
to learn a new task efficiently. This problem falls in the area of Transfer Learning (Pan & Yang,
2010). Considering the state distribution expert is skilled at solving, (Dωi the source distribution)
it can be advantageous to start learning a new, target task ωi+1 with target distribution Dωi+1

using
assistance from the expert. The agent learning how to solve the target task with domain Dωi+1 is
referred to as the student. When the expert is used to assist the student in learning the target task it
can be referred to as the teacher. The success of these methods are dependent on overlap between
the Dωi and Dωi+1 state distributions.

4 PROGRESSIVE LEARNING

Although we focus on the problem of being presented with tasks sequentially, there exist other meth-
ods for learning a multi-skilled character. We considered 4 overall integration methods for learning
multiple skills, the first being a controller that learns multiple tasks at the same time (MultiTasker),
where a number of skills are learned at the same time. It has been shown that learning many tasks
together can be faster than learning each task separately (Parisotto et al., 2015). The curriculum for
using this method is shown in Figure 1a were during a single RL simulation all tasks are learned
together. It is also possible to randomly initialize controllers and train in parallel (Parallel) and
then combine the resulting policies Figure 1b. We found that learning many skills from scratch was
challenging, we were only able to get fair results for the flat task. Also, when a new task is to be
learned with the Parallel model it would occur outside of the original parallel learning, leading to a
more sequential method. A TL-Only method that uses TL while learning tasks in a sequence Fig-
ure 1c, possibly ending with a distillation step to combine the learned policies to decrease forgetting.
For more details see Appendix: 8.4. The last version (PLAiD) learns each task sequentially using
TL from the previous, most skilled policy, in the end resulting in a policy capable of solving all
tasks Figure 1d. This method works well for both combining learned skills and learning new skills.
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Figure 1: Different curriculum learning process. The red box with a D in it denotes a distillation
step that combines policies. Each gray box denotes one iteration of learning a new policy. The larger
red boxes with an Lterrain−type denotes a learning step where a new skill is learned.

4.1 PROGRESSIVE LEARNING AND INTEGRATION VIA DISTILLATION

In this section, we detail our proposed learning framework for continual policy transfer and distil-
lation (PLAiD). In the acquisition (TL) step, we are interested in learning a new task ωi+1. Here
transfer can be beneficial if the task structure is somewhat similar to previous tasks ωi. We adopt
the TL strategy of using an existing policy network and fine-tuning it to a new task. Since we are
not concerned with retaining previous skills in this step, we can update this policy without concern
for forgetting. As the agent learns it will develop more skills and the addition of every new skill can
increase the probability of transferring knowledge to assist the learning of the next skill.

In the integration (distillation) step, we are interested in combining all past skills (π0, . . . , πi) with
the newly acquired skill πi+1. Traditional approaches have used policy regression where data is
generated by collecting trajectories of the expert policy on a task. Training the student on these
trajectories does not always result in robust behaviour. This poor behaviour is caused by the student
experiencing a different distribution of trajectories than the expert during evaluation. To compensate
for this distribution difference, portions of the trajectories should be generated by the student. This
allows the expert to suggest behaviour that will pull the state distribution of the student closer to
the expert’s. This is a common problem in learning a model to reproduce a given distribution of
trajectories (Ross et al., 2010; Bengio et al., 2015; Martinez et al., 2017; Lamb et al., 2016). We
use a method similar to the DAGGER algorithm (Ross et al., 2010) which is useful for distilling
policies (Parisotto et al., 2015). See Appendix: 8.2.1 for more details. As our RL algorithm is an
actor-critic method, we also perform regression on the critic by fitting both in the same step.

4.2 HIGH LEVEL EXPERIMENT DESIGN

The results presented in this work cover a range of tasks that share a similar action space and state
space. Our focus is to demonstrate continual learning between related tasks. In addition, the con-
ceptual framework allows for extensions that would permit differing state spaces, described later
in Section: 5.2.

5 RESULTS

In this experiment, our set of tasks consists of 5 different terrains that a 2D humanoid walker (pd-
biped) learns to traverse. The humanoid walker is trained to navigate multiple types of terrain
including flat in (Figure 6a), incline (Figure 6b), steps (Figure 6c), slopes (Figure 6d), gaps (Fig-
ure 6e) and a combination of all terrains mixed (Figure 6f) on which agents are trained. The goal
in these tasks is to maintain a consistent forward velocity traversing various terrains, while also
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matching a motion capture clip of a natural human walking gait on flat ground, similar to (Peng &
van de Panne, 2016). The pd-biped receives as input both a character and (eventually) a terrain state
representation, consisting of the terrains heights of 50 equally-spaced points in front of the charac-
ter. The action space is 11-dimensional, corresponding to the joints. Reasonable torque limits are
applied, which helps produce more natural motions and makes the control problem more difficult.
A detailed description of the experimental setup is included in Section: 8.5. The tasks are presented
to the agent sequentially and the goal is to progressively learn to traverse all terrain types.

We evaluate our approach against three baselines. First, we compare the above learning curriculum
from learning new tasks in PLAiD with learning new tasks in Parallel. This will demonstrate that
knowledge from previous tasks can be effectively transferred after distillation steps. Second, we
compare to the MultiTasker to demonstrate that iterated distillation is effective for the retention
of learned skills. The MultiTasker is also used as a baseline for comparing learning speed. Last,
a method that performs TL between tasks and concludes with a distillation step is evaluated to
illustrate the result of different TL and distillation schedules. The results of the PLAiD controller
are displayed in the accompanying Video 1

5.1 TRANSFER LEARNING

First, the pd-biped is trained to produce a walking motion on flat ground (flat). In Figure 2a PLAiD
is compared to the three baselines for training on incline. The TL-Only method learns fast as it
is given significant information about how to perform similar skills. The Parallel method is given
no prior information leading to a less skilled policy. The first MultiTasker for the incline task is
initialized from a terrain injected controller that was trained to walk on flat ground. Any subsequent
MultiTasker is initialized from the final MultiTasker model of the preceding task. This controller
has to learn multiple tasks together, which can complicate the learning process, as simulation for
each task is split across the training and the overall RL task can be challenging. This is in contrast
to using PLAiD, that is also initialized with the same policy trained on flat, that will integrate skills
together after each new skill is learned.

In Figure 2b the MultiTasker is learning the new task (steps) with similar speed to PLAiD. However,
after adding more tasks the MultiTasker is beginning to struggle in Figure 2c and starts to forget
in Figure 2d, with the number of tasks it must learn at the same time. While PLAiD learns the new
tasks faster and is able to integrate the new skill required to solve the task robustly. TL-Only is also
able to learn the new tasks very efficiently.

5.2 INPUT FEATURE INJECTION

An appealing property of using distillation in PLAiD is that the combined policy model need not
resemble that of the individual expert controllers. For example, two different experts lacking state
features and trained without a local map of the terrain can be combined into a single policy that has
new state features for the terrain. These new terrain features can assist the agent in the task domain
in which it operates.

We introduce the idea of input injection for this purpose. We augment a policy with additional input
features while allowing it to retain its original functional behaviour similar to (Chen et al., 2015).
This is achieved by adding additional inputs to the neural network and initializing the connecting
layer weights and biases to 0. By only setting the weights and biases in the layer connecting the new
features to the original network to 0, the gradient can still propagate to any lower layers which are
initialized random without changing the functional behaviour. This is performed when distilling the
flat and incline experts. Further details can be found in Appendix: 8.3.

5.3 DISTILLING MULTIPLE POLICIES

Training over multiple tasks at the same time may help the agent learn skills quicker, but this may
not scale with respect to the number of tasks. When training the MultiTasker over two or even three
tasks (Figure 3a) the method displays good results, however when learning a fourth or more tasks
the method struggles, as shown in Figure 3b and 3b. Part of the reason for this struggle is when new

1https : //youtu.be/DjHbHCXGk0
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(a) incline (b) steps

(c) slopes (d) gaps

Figure 2: Learning comparison over each of the environments. These plots show the mean and std
over 5 simulations, each initialized with different random seeds. The learning for PLAiD is split
into two steps, with TL (in green) going first followed by the distillation part (in yellow).

Tasks flat incline steps slopes gaps average
PLAiD 0.054 0.155 0.001 0.043 −0.083 0.063
TL-Only −0.065 −0.044 −0.235 −0.242 0.000 −0.147
TL-Only (with Distill) 0.068 0.039 −0.030 −0.062 −0.133 −0.024
MultiTasker −0.001 −0.053 −0.030 0.119 0.000 0.009

Table 1: These values are relative percentage changes in the average reward, where a value of 0 is no
forgetting and a value of −1 corresponds to completely forgetting how to perform the task. A value
> 0 corresponds to the agent learning how to better perform a task after training on other tasks.
Here, the final policy after training on gaps compared to the original polices produced at the end of
training for the task noted in the column heading. The TL-Only baseline forgets more than PLAiD.
The MultiTasker forgets less than PLAiD but has a lower average reward over the tasks.

tasks are added the MultiTasker has to make trade-offs between more tasks to maximizes. As more
tasks are added, this trade-off becomes increasingly complex resulting in the MultiTasker favouring
easier tasks. Using PLAiD to combine the skills of many policies appears to scale better with respect
to the number of skills being integrated. This is likely because distillation is a semi-supervised
method which is more stable than the un-supervised RL solution. This can be seen in Figure 3d,
3e and especially in 3f where PLAiD combines the skills faster and can find higher value policies
in practice. PLAiD also presents zero-shot training on tasks which it has never been trained on.
In Figure 7 this generalization is shown as the agent navigates across the mixed environment.

This is also reflected in Table 1, that shows the final average reward when comparing methods
before and after distillation. The TL-Only is able to achieve high performance but much is lost
when learning new tasks. A final distillation step helps mitigate this issue but does not work as well
as PLAiD. It is possible performing a large final distillation step can lead to over-fitting.

There are some indications that distillation is hindering training during the initial few iterations.
We are initializing the network used in distillation with the most recently learning policy after TL.
The large change in the initial state distribution from the previous seen distribution during TL could
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(a) MultiTasker on 3 tasks (b) MultiTasker on 4 tasks (c) MultiTasker on 5 tasks

(d) PLAiD on 3 tasks (e) PLAiD on 4 tasks (f) PLAiD on 5 tasks

Figure 3: These figures show the average reward a particular policy achieves over a number of tasks.

be causing larger gradients to appear, disrupting some of the structure learned during the TL step,
shown in Figure 3d and 3e. There also might not exist a smooth transition in policy space between
the newly learned policy and the previous policy distribution.

6 DISCUSSION

MultiTasker vs PLAiD: The MultiTasker may be able to produce a policy that has higher overall
average reward, but in practise constraints can keep the method from combining skills gracefully.
If the reward functions are different between tasks, the MultiTasker can favour a task with higher
rewards, as these tasks may receive higher advantage. It is also a non-trivial task to normalize the
reward functions for each task in order to combine them. The MultiTasker may also favour tasks that
are easier than other tasks in general. We have shown that the PLAiD scales better with respect to the
number of tasks than the MultiTasker. We expect PLAiD would further outperform the MultiTasker
if the tasks were more difficult and the reward functions dissimilar.

In our evaluation we compare the number of iterations PLAiD uses to the number the MultiTasker
uses on only the new task, which is not necessarily fair. The MultiTasker gains its benefits from
training on the other tasks together. If the idea is to reduce the number of simulation samples that
are needed to learn new tasks then the MultiTasker would fall far behind. Distillation is also very
efficient with respect to the number of simulation steps needed. Data could be collected from the
simulator in groups and learned from in many batches before more data is needed as is common for
behavioural cloning. We expect another reason distillation benefits learning multiple tasks is that
the integration process assists in pulling policies out of the local minima RL is prone to.

Transfer Learning: Because we are using an actor-critic learning method, we also studied the
possibility of using the value functions for TL. We did not discover any empirical evidence that this
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assisted the learning process. When transferring to a new task, the state distribution has changed
and the reward function may be completely different. This makes it unlikely that the value function
will be accurate on this new task. In addition, value functions are in general easier and faster to
learn than policies, implying that value function reuse is less important to transfer. We also find that
helpfulness of TL depends on not only the task difficulty but the reward function as well. Two tasks
may overlap in state space but the area they overlap could be easily reachable. In this case TL may
not give significant benefit because the overall RL problem is easy. The greatest benefit is gained
from TL when the state space that overlaps for two tasks is difficult to reach and in that difficult to
reach area is where the highest rewards are achieved.

6.1 LIMITATIONS:

Once integrated, the skills for our locomotion tasks are self-selecting based on their context, i.e.,
the knowledge of the upcoming terrain. It may be that other augmentation and distillation strategies
are better for situations where either the reward functions are different or a one-hot vector is used to
select the currently active expert. In our transfer learning results we could be over fitting the initial
expert for the particular task it was learning. Making it more challenging for the policy to learn a new
task, resulting in negative transfer. After learning many new tasks the previous tasks may not receive
a large enough potion of the distillation training process to preserve the experts skill well enough.
How best to chose which data should be trained on next to best preserve the behaviour of experts is
a general problem with multi-task learning. Distillation treats all tasks equally independent of their
reward. This can result in very low value tasks, receiving potentially more distribution than desired
and high value tasks receiving not enough. We have not needed the use a one-hot vector to indicate
what task the agent is performing. We want the agent to be able to recognize which task it is given
but we do realize that some tasks could be too similar to differentiate, such as, walking vs jogging
on flat ground.

6.2 FUTURE WORK:

It would be interesting to develop a method to prioritize tasks during the distillation step. This could
assist the agent with forgetting issues or help with relearning tasks. While we currently use the
Mean Squared Error (MSE) to pull the distributions of student policies in line with expert polices
for distillation, better distance metrics would likely be helpful. Previous methods have used KL
Divergence in the discrete action space domain where the state-action value function encodes the
policy, e.g., as with Deep Q-Network (DQN). In this work we do not focus on producing the best
policy from a mixture of experts, but instead we match the distributions from a number of experts.
The difference is subtle but in practice it can be more challengine to balance many experts with
respect to their reward functions. It could also be beneficial to use a KL penalty while performing
distillation, i.e., something similar to the work in (Teh et al., 2017) in order to keep the policy from
changing too rapidly during training.

7 CONCLUSION

We have proposed and evaluated a method for the progressive learning and integration (via distilla-
tion) of motion skills. The method exploits transfer learning to speed learning of new skills, along
with input injection where needed, as well as continuous-action distillation, using DAGGER-style
learning. This compares favorably to baselines consisting of learning all skills together, or learning
all the skills individually before integration. We believe that there remains much to learned about
the best training and integration methods for movement skill repertoires, as is also reflected in the
human motor learning literature.
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8 APPENDIX

8.1 NETWORK MODELS

We used two different Network models for the experiments in this paper. The first model is a
blind model that does not have any terrain features. The blind policy is a Neural Network with 2
hidden layers (512× 256) with ReLU activations. The output layer of the policy network has linear
activations. The network used for the value function has the same design except there is 1 output on
the final layer. This design is used for the flat and incline tasks.
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We augment the blind network design by adding features for terrain to create an agent with sight.
This network with terrain features has a single convolution layer with 8 filters of width 3. This
constitutional layer is followed by a dense layer of 32 units. The dense layer is then concatenated
twice, once along each of the original two hidden layers in the blind version of the policy.

8.2 HYPER PARAMETERS AND TRAINING

The policy network models a Gaussian distribution by outputting a state dependant mean. We use a
state independent standard deviation that normalized with respect to the action space and multiplied
by 0.1. We also use a version of epsilon greedy exploration where with ε probability an exploration
action is generated. For all of our experiments we linearly anneal ε from 0.2 to 0.1 in 100, 000
iterations and leave it from that point on. Each training simulation takes approximately 5 hours
across 8 threads. For network training we use Stochastic Gradient Decent (SGD) with momentum.
During the distillation step we use gradually anneal the probability of selecting an expert action
from 1 to 0 over 10, 000 iterations.

For the evaluation of each model on a particular task we use the average reward achieved by the
agent over at most 100 seconds of simulation time. We average this over running the agent over a
number of randomly generated simulation runs.

8.2.1 DISTILLATION

For each of the distillation steps we initialize the policy from the most recently trained policy. This
policy has seen all of the tasks thus far but may have overfit the most recent tasks. We us a version
of the DAGGER algorithm for the distillation process (Ross et al., 2010). We anneal from select-
ing actions from the expert polices to selecting actions from the student policy The probability of
selecting an action from the expert is annealed to near zero after 10, 000 training updates. We still
add exploration noise to the policies when generating actions to take in the simulation. This is also
annealed along with the probability of selecting from the expert policy. The actions used for training
always come from the expert policy. Although some actions are applied in the simulation from the
student, during a training update those actions will be replaced with ones from the proper expert.
The expert used to generate actions for tasks 0 − i is πi and the expert used to generate action for
task i+ 1 is πi+1. We keep around at most 2 policies at any time.

8.3 INPUT FEATURES AND INJECTION

In order to add additional input features to the policy network we construct a new network. This new
network has a portion of it that is the same design as the previous network plus additional parameters.
First we initialize the new network with random parameters. Then we copy over the values from the
previous network into the new one for the portion of the network design that matches the old. Then
the weight for the layers that connect the old portion of the network to the new are set to 0. This
will allow the network to preserve the previous distribution it modeled. Having the parameters from
the old network will also help generate gradients to train the new 0 valued network parameters. We
use feature injection to assist the learning method with differentiating between different states. For
example, it could be challenging to discover the difference between the flat and incline tasks using
only the character features. Therefore, we add new terrain features to allow the controller to better
differentiate between these two different tasks.

8.4 TL-ONLY BASELINE

We also evaluate a baseline where we TL for all tasks. In this baseline TL is performed for a number
of tasks and then distillation is used to combined these many learned skills. This method can be
considered a version of PLAiD where tasks are learned in groups and after some number of tasks,
a collection of policies/skills are distilled together. In Figure 5 the learning curves for the TL-Only
baseline are given. The TL-Only method learns new tasks well. We do not show the incline tasks as
the two methods are the same up to starting the steps tasks. In Table 1 the amount of forgetting is
compared between methods. To compare the amount of forgetting between TL-Only and PLAiD we
show the relative loss in average reward between the original policy trained for the tasks steps and
slopes and the final polices for each method on gaps. The TL-Only method shows a larger drop in

12



Published as a conference paper at ICLR 2018

(a) (b)

Figure 4: (a) The input features include both the character state shown as the red lines between the
root of the character and the character’s links and the terrain features shown as the blue arrows along
the ground. (b) A diagram of method used to inject additional state features for the terrain.

Tasks flat incline steps slopes gaps average
PLAiD 0.891 0.800 0.666 0.602 0.529 0.698
TL-Only 0.790 0.662 0.615 0.543 0.626 0.647
TL-Only (with Distill) 0.903 0.719 0.781 0.671 0.543 0.723
MultiTasker 0.844 0.757 0.677 0.656 0.504 0.688

Table 2: Final average reward for each method. Higher is better. Here, the final policy is after
training on gaps. the PLAiD method achieves on average higher values across tasks.

policy performance corresponding to a large amount of forgeting compared to PLAiD, in particular
for the more complex tasks steps and slopes. Interestingly, the final distllation step for TL-Only
appears to reduce the performance of the policy. We believe this is related to the final distillation
step being more challenging than performing a simpler distillation after each new task. Note that we
only compare these two steps because the process for the first two tasks for PLAiD and TL-Only are
the same. A comparison of the average rewards for the final policies are given in Table 2.

(a) steps (b) slopes (c) gaps

Figure 5: Transfer learning only baselines for each of the new tasks.

8.5 AGENT DESIGN

The agent used in the simulation models the dimensions and masses of the average adult. The size
of the character state is 50 parameters that include the relative position and velocity of the links in
the agent (Figure 4a). The action space consists of 11 parameters that indicate target joint positions
for the agent. The target joint positions (pd-targets) are turned into joint torques via proportional
derivative controllers at each joint.

The reward function for the agent consists of 3 primary terms. The first is a velocity term the rewards
the agent for going at velocity of 1 m/s The second term is the difference between the pose of the agent
and the current pose of a kinematic character controlled via a motion capture clip. The difference
between the agent and the clip consists of the rotational difference between each corresponding joint
and the difference in angular velocity. The angular velocity for the clip is approximated via finite
differences between the current pose of the clip and it’s last pose. The last term is an L2 penalty on
the torques generated by the agent to help reduce spastic motions. We also impose torque limits on
the joints to reduce unrealistic behaviour, limits: Hips 150, knees 125, ankles 100, shoulders 100,
elbows 75 and neck 50 N/m.
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Terrain Types All terrain types are randomly generated per episode, except for the flat terrain.
The incline terrain is slanted and the slant of the terrain is randomly sampled between 20 and 25
degrees. The steps terrain consists of flat segments with widths randomly sampled from 1.0 m to
1.5 m followed by sharp steps that have randomly generated heights between 5 cm and 15 cm. The
slopes terrain is randomly generated by updating the slope of the previous point in the ground with
a value sampled from −20 and 20 degrees to generate a new portion of the ground every 10 cm. The
gaps terrain generate gaps of width 25 - 30 cm separated by flat segments of widths sampled from
2.0 m to 2.5 m. The mixed terrain is a combination of the above terrains where a portion is randomly
chosen from the above terrain types.

(a) flat (b) incline (c) steps

(d) slopes (e) gaps (f) mixed

Figure 6: The environments used to evaluate PLAiD.

(a) (b) (c) (d) (e) (f) (g)

Figure 7: Still frame shots of the pd-biped traversing the mixed environment.

8.6 MULTITASKER

In certain cases the MultiTasker can learn new task faster than PLAiD. In Figure 8a we present the
MultiTasker and compare it to PLAiD. In this case the MultiTasker splits its training time across
multiple tasks, here we compare the two methods with respect to the time spent learning on the
single new task. This is a good baseline to compare our method against but in some ways this is not
fair. If the real measure of how efficient a learning method is the number of simulation samples that
are needed to learn would fall far behind as the MultiTasker needs to train across all tasks to gain
the benefits of improving a single task without forgetting the old tasks.
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(a)

Figure 8: (a) Shows that the MultiTasker can learn faster on steps, flat and incline than PLAiD
(expert) learning the single task steps with TL.
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