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Figure 1: Real-time planar simulation of a dog capable of traversing terrains with gaps, walls, and steps. The control policy for this skill is
computed offline using reinforcement learning. The ground markings indicate the landing points for the front and hind legs.

Abstract

The locomotion skills developed for physics-based characters most
often target flat terrain. However, much of their potential lies with
the creation of dynamic, momentum-based motions across more
complex terrains. In this paper, we learn controllers that allow
simulated characters to traverse terrains with gaps, steps, and walls
using highly dynamic gaits. This is achieved using reinforcement
learning, with careful attention given to the action representation,
non-parametric approximation of both the value function and the
policy; epsilon-greedy exploration; and the learning of a good state
distance metric. The methods enable a 21-link planar dog and a
7-link planar biped to navigate challenging sequences of terrain us-
ing bounding and running gaits. We evaluate the impact of the key
features of our skill learning pipeline on the resulting performance.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Computer Animation, Physics Simulation

1 Introduction

Physics-based simulations arguably offer some of the best
prospects for creating models of human and animal motion that
generalize well across a wide range of situations. The principle
challenge to be solved is that of control, namely determining
what actions should be applied over time in order to produce
movements that solve a motion task in a natural and robust fashion.
Significant progress has been made with regard to motions such
as walking, running, and other specific motions, such as falling
and rolling. This has been achieved using a variety of control
methods including those based on hand-crafted abstractions and
feedback laws; policy search to optimize suitable feedback laws;
and model-predictive control methods.
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In this paper we expand the capabilities of simulated articulated
figures by learning control strategies for highly dynamic motions
across challenging terrains that contain gaps, walls, and steps.
These skills require actions, i.e., jumps and leaps, that are compat-
ible with leaping over (or onto) upcoming terrain obstacles, while
also being compatible with the current body state of the character.
The interdependence of terrain-obstacle sequences, body-state se-
quences, and action sequences are a defining characteristic of the
problem that needs to be solved. The final control policies should
produce actions that are both robust and efficient.

Our solution employs a reinforcement learning (RL) method that is
characterized by:

• continuous and high-dimensional states and actions;

• value-iteration based on a set of (s, a, r, s′) transition tuples,
using positive temporal difference (PTD) updates, followed
by tuple-culling;

• non-parametric kernel-based value function and policy ap-
proximation, with outlier removal;

• an embodied state representation and an optimization process
for learning a good state distance metric; and

• a progressive learning approach that alternates between ε-
greedy exploration and value iteration.

Our contribution lies in showing that, taken together, this set of al-
gorithmic choices opens the door to the development of new classes
of skills for simulated characters. The difficulty of applying RL to
continuous state and action spaces is well known, and thus our work
provides insights into how RL methods can be successfully applied
to such problems. We evaluate the method on a simulated 21-link
planar dog and a 7-link planar biped that learn to navigate terrains
with sequences of gaps, walls, and steps. We investigate the impact
of the various design decisions that characterize our approach.

2 Related Work

The use of physics-based models in computer graphics has yielded
tremendous dividends in rendering, geometric modeling, and the
animation of phenomena such as fluids and cloth. Similar divi-
dends are available for physics-based character animation, although
progress in this area has been tempered by the difficulty of model-
ing the motor control skills of humans and animals that are also re-
quired to drive the simulations. This topic has a rich history and we
refer the reader to a recent survey paper [Geijtenbeek and Pronost
2012] for an overview.



Physics-based character animation: One approach for control
is to specify short term goals for the motion using a mix of con-
straints and objectives. The control can then be computed using in-
verse dynamics (if fully constrained), solving a quadratic program
for the current timestep, or by solving a finite-horizon trajectory op-
timization, e.g., [Stewart and Cremer 1992; Jain et al. 2009; Mac-
chietto et al. 2009; de Lasa et al. 2010; Mordatch et al. 2010] and
others. Because these methods leverage an explicit model of the
equations of motion (EOM), they are often categorized as model
predictive control (MPC) methods. Another category of approach
is to develop explicit control policies that directly use high-and-low
level goals to compute the actions that help achieve these goals,
without assuming full knowledge of the EOM, e.g., [Raibert and
Hodgins 1991; Yin et al. 2007; Ye and Liu 2010; Wang et al.
2009; Coros et al. 2010; Coros et al. 2011; Tan et al. 2014]. These
methods include the use of foot-placement feedback laws, Jacobian
transpose control, inverted pendulum models, and PD-controllers.
Offline and online optimization play an important role in many of
the methods, along with human insight into design of tasks, con-
troller structure, and objective functions, e.g., [Ha and Liu 2015].

Balance is a key issue to be tackled for achieving robust locomo-
tion, and thus the above approaches generally include a strategy or
objective that allows for the anticipation of upcoming footplants.
Many methods also rely on motion capture data, which is one way
to achieve more realistic motions, e.g., [Zordan and Hodgins 2002;
Kwon and Hodgins 2010; Lee et al. 2010b; Coros et al. 2011;
Wei et al. 2011]. Some capability for coping with terrain obsta-
cles is incorporated into several control strategies [Liu et al. 2012;
Ha et al. 2012; Yin et al. 2008; Coros et al. 2008; Mordatch et al.
2010; Coros et al. 2011]. In comparison to this existing work, the
approach we propose offers significantly more capable motions in
terms of tightly-sequenced obstacles and types of terrain obstacles,
and it develops these capabilities in a principled fashion. In rela-
tion to prior work on learning for bicycle stunts [Tan et al. 2014],
our work tackles problems that are characterized by obstacles rather
than balance regulation, that have high-D outputs (14–28 vs 1–3),
and that employ value-iteration instead of policy search.

Reinforcement Learning: Learning good control strategies is an
enticing alternative to designing them. Reinforcement learning
(RL) offers a general approach to this problem. It seeks to learn
the best action to take in any given state such that the resulting mo-
tions maximize a cumulative reward function. This includes policy
search methods that optimize directly over a given set of policy pa-
rameters. In animation, RL has been applied with great success to
kinematic models of motions, where the actions consist of motion
clips, with possibly constrained connectivity. At the end of any
given motion clip, the control problem is then to choose the next
clip to blend and play. This framework has been applied to tasks
such as responding to user-directed goals, i.e., “now walk in this
direction”, moving to a desired goal location, or interacting with
other characters [Lee and Lee 2006; Treuille et al. 2007; McCann
and Pollard 2007; Lee et al. 2009]. Our work draws inspiration
from previous work on motion fields [Lee et al. 2010a], which de-
velops kinematic controllers for a given set of transition tuples. We
also work with RL as applied to tuple sets, but also support the
generation of new states and actions during exploration.

RL methods are challenging to apply to physics-based character
animation because the control is more indirect: the motion will in-
evitably drift away from the intended one, which is not the case
when playing motion clips. Furthermore, while motion clips act as
discrete states (which clip is currently playing) and discrete actions
(which clip should be played next), a physics-based character has
a continuous, high-dimensional state space and action space. It is
also not obvious in advance which regions of the state space will

Figure 2: Control policy for dog on gaps terrain.

be visited and which actions will be useful. To make progress on
this problem, one simplification has been to use a set of existing lo-
comotion controllers to define a discrete action space [Coros et al.
2009]. At the start of each locomotion step, the control policy se-
lects a controller from N predefined controllers for use during the
upcoming step. This has the limitation that the set of actions needs
to be fixed in advance, which is problematic in our setting. We wish
to have a continuous action space that can be explored as needed in
order to deal with novel states that may arise during the learning
process.

A large body of research is dedicated to reinforcement learning and
our review can only touch on a number of representative works due
to space constraints. A good discussion of the specific challenges
that are presented by continuous action spaces is given by van
Hasselt et al. [Van Hasselt and Wiering 2007; Van Hasselt 2012].
Policy search methods and non-linear function approximators com-
monly play key roles in many methods. Several recent approaches
rely on algorithms that alternate between collecting potentially bet-
ter solution samples in the vicinity of a current policy and policy
adaptation using the new samples, i.e., [Ross et al. 2011; Levine
and Koltun 2014]. Alternatively, value-iteration or policy-iteration
methods require the use of function approximators to model the
value function, V (s), or relatedly, the Q function, Q(s, a). We re-
fer the reader to a recent monograph [Busoniu et al. 2010] for a
general overview of RL with function approximation. While meth-
ods based on global basis function approximation are best suited to
low-dimensional settings, methods based on non-parametric kernel
estimation [Ormoneit and Sen 2002] and Gaussian processes [En-
gel et al. 2005] may generalize better to high-dimensional settings.
Often there is also significant benefit to be gained from experience
replay or batch-based RL methods, an overview of which can be
found in [Lange et al. 2012] and [Fonteneau et al. 2013]. As de-
scribed earlier (§1), the RL methodology we develop in this paper
is characterized by a number of key design choices and we evalu-
ate the impact of these choices in our results. Our value iteration
method is closest in nature to the CACLA algorithm [Van Hasselt
and Wiering 2007; Van Hasselt 2012], that also uses batched pos-
itive temporal difference updates, and which is tested on problems
with a 1D action space.

3 Overview

Our goal is to generate control policies that enable a physics-based
character to traverse given classes of terrain with a dynamic gait.
Figure 2 illustrates an example gaps terrain, which consists of gaps
of random width that are spaced at random intervals. The con-
trol policy selects actions as a function of the current state, e.g.,
a1 = π(s1), which results in a subsequent state s2. As illustrated
in the example, each action, ai, produces a complete bound or leap
that may succeed or fail, e.g., s6. Actions begin and end on a spe-
cific contact event, for example when the dog’s hind legs come into
contact with the ground. In deciding on the best action, the control
policy needs to consider the current state of the dog, i.e., its partic-
ular pose and related velocities, as well as the state of the upcoming
terrain. The state, s, thus encompasses both of these factors. Lastly,
each action also results in a reward, r(s, a), that rewards forward
motion and penalizes falls and movement effort.



Figure 3: Overview of skill learning pipeline.

The multi-step learning pipeline that we develop strives to learn an
optimal control policy, which is defined as one that given a current
state, s, maximizes V (s), the sum of future-discounted rewards that
result from the policy decisions. The learning is done in a progres-
sive fashion through the continued accumulation of transition tu-
ples, T = {(si, ai, ri, s′i)}. These embody all the past experiences
of the character in traversing example terrains during exploration
stages. The tuples resulting from exploration are added to any ex-
isting tuples and are then used in a value iteration stage to compute
an optimal policy, as shown in Figure 3 (bottom). Importantly, the
policy and the related value function are represented using the tu-
ples themselves by augmenting each tuple, Ti, with a value function
value, Vi, and an optimal policy tuple attribute, Πi = true|false .
These serve to represent the value function and policy action (im-
plicitly ai if Πi = true) at state si. The optimal policy tuple set,
T ∗ is then defined by the set of all tuples that have the attribute Πi

enabled, i.e., T ∗ = {Ti|Πi = true}.

A small set of fixed actions, which are designed by hand or during a
separate optimization process, are used to initialize the policy syn-
thesis process. A policy that makes uniform random choices among
the given actions is used to collect an initial set of transition tuples
that is used to develop an initial policy. Multiple further iterations
of exploration and synthesis are then used to produce successive
improvements in the control policy, as ilustrated in Figure 3.

A key step in our learning pipeline is distance metric optimization.
Our non-parametric (i.e., sample-based) function approximators for
estimating V̂ (s) and π̂(s) are based on kNN interpolation. This
therefore relies heavily on having a good distance metric to find
the most relevant nearby states {si} for a query state, s. The dis-
tance metric optimization is used to replace the initial rudimentary
hand-designed distance metric with one that is specifically tailored
for the given category of terrain. With the improved distance met-
ric in hand, additional exploration and synthesis stages are used
to achieve further policy improvements. Lastly, an optional tuple
culling step (not shown in Figure 3), is used to significantly reduce
the final number of tuples in the policy.

Throughout the iterations of exploration and synthesis, new actions
are explored, which leads to new regions of the state space being
visited. This progressive, coupled exploration of the state and ac-
tion spaces is a significant feature of the method, as it avoids hav-
ing to predefine bounded domains for states and actions. The use
of distance metric optimization also allows for arbitrary features to
be used in the state vector and they will be weighted in accordance
with their utility.

4 Policy Synthesis

A control policy, π : S → A, is defined by a mapping from the
state, S ∈ Rn, to an action, A ∈ Rm. The characters whose mo-
tion we wish to control have high-dimensional and continuous state
spaces and actions spaces. For our problem, the state s ∈ S models

both the state of the character and the state of the upcoming terrain.
Actions are modeled in terms of discrete bounds or leaps, i.e., a sin-
gle action models the control required to complete a single bound or
leap for the dog, and a single running step for the biped. We defer
a more specific description of the state and action parameterization
until later (§5, §6).

Value function: As is standard in reinforcement learning, we
wish to learn an optimal control policy that maximizes the dis-
counted cumulative reward, as represented by the objective:

J =
∑

i=0...∞

γiri(si, ai),

and γ < 1 is the discount factor. The value function, V (s), models
this as a function of the state, and can be expressed compactly as:

V (s) = r(s, a) + γV (s′)

where s is the current state, a is an action defined by a control
policy, and s′ is the state resulting from the action. The optimal
policy, π∗ is one that maximizes V (s) and therefore satisfies:

V ∗(s) = max
a
{r(s, a) + γV ∗(s′)}.

or, equivalently,

V ∗(s) = r(s, π∗(s)) + γV ∗(s′).

The value function, V (s), and control policy, π(s) are intimately
related as shown above. The key challenge, then, is to develop the
right representations and algorithms to compute optimal solutions,
given the continuous and high-dimensional nature of both states and
actions in our problem setting. The method we adopt is based on
value iteration as implemented via positive temporal difference up-
dates applied to transition tuples, which we now describe in further
detail.

Transition tuples: A set of transition tuples, T : {Tj}, forms
the basis for computing our control policies where each tuple,
Tj = (sj , aj , rj , s

′
j), describes a transition from a state sj to a state

s′j after taking an action aj , and receiving a reward rj during this
transition. Here, j represents an arbitrary tuple index, i.e., not a dis-
crete time index. We drop this index where this can be done without
ambiguity, refering to the tuple elements as (s, a, r, s′). The tuples
are collected during the exploration phases using episodic simula-
tions across randomly-generated terrains. Each episode consists of
a sequence of actions, i.e., dog bounds or biped running steps, that
continue to advance the character across the terrain until a fall oc-
curs, at which point another episode is started. The episodes gener-
ate contiguous sequences of states, i.e., the ending state, s′, of one
action becomes the starting state, s, of the next action. However
our conceptual view treats these as a set of independent tuples, as
illustrated in Figure 4 (a).

Non-Parametric Function Approximation: Given the contin-
uous nature of the states and actions, function approximators are
needed to represent the value function, V (s), and the control pol-
icy, a = π(s). We use a non-parametric approximation method for
both, based on the tuples, T . Each tuple, Ti, stores a value function,
Vi, and action, ai, that are associated with the starting state of the
transition tuple, si, as illustrated in Figure 4 (b). For the function
approximation, we use kNN interpolation with a Gaussian kernel:

V̂ (s) =
1

W

∑
i=1...k

wiVNi(s)δi



Figure 4: Transition Tuples. (a) Conceptual view of tuples in state-
space. (b) Data points used for non-parametric modeling of V (s)
and π(s). (c) Points used to compute the value function update, and
the neighbors for kNN interpolation of V .

where W =
∑
i=1...k wiδi, Ni(s) returns the tuple index of the

ith nearest neighbor of state s, wi = k(d) = e−d
2/σ2

λ and σλ is a
kernel width. The kernel distance, d, is given by:

d(s, sj) = (s− sj)TM(s− sj),

where M = diag(µ) and µ is a vector defining a set of to-be-
learned normalized weightings for the state vector components.
Lastly, δi represents a trimming function that can be used for outlier
removal:

δi =

{
0 : Ti is an outlier with respect to N(s)
1 : otherwise

For value function approximation, we use δi = 1, i.e., we do not
apply outlier removal. This allows the value function to be contin-
uous even when the underlying policy has a discontinuity, as moti-
vated by what occurs during optimal control of bang-bang control
tasks. However, for the policy function approximation, a = π(s),
outlier removal is crucial to performance, as we detail shortly. In
our implementation, k = 10. To facilitate fast queries with large
numbers of tuples in a high-dimensional space, we use the FLANN
library [Muja and Lowe 2009] with 4 randomized k-d trees.

Outlier removal: The averaging applied by a kNN approxima-
tion can be problematic for policy approximation. Figure 5 illus-
trates an example scenario that leads to a sharp discontinuity in the
control policy. The dog can choose to make an additional short
bound before leaping across the gap, or can directly leap across the
gap. Both actions are well suited to the situation and thus are likely
to exist as promising actions for nearby states and therefore play a
role in the kNN approximation. However, averaging of these very
different actions leads to a poor interpolated outcome, i.e., landing
in the middle of the gap. A nearest-neighbor policy approximation
avoids this averaging. However, this eliminates averaging in the
common case where it is desirable, and can yield poor decisions
because of the strong dependence on only one data point. In the
case of discrete actions, a voting approach can be used and we thus
use this for discrete-action policy approximation for which we shall
perform comparative evaluations.

Our solution is to discard outliers, where an outlier is defined as a
kNN member whose action differs more than some epsilon from the
kNN mean action. Unfortunately, we do not have a good distance
metric for the action space. We do, however, have a good distance
metric for the state space, which we leverage as follows. Actions
are deemed similar if they lead to similar states. Given that the
k nearest neighbors were selected based on the proximity of their
starting states, s, we use their end-state differences, s′ − s̄′, as a
proxy for their action differences. We therefore identify the kNN

Algorithm 1 Remove outliers
1: input s: query state
2: input S = {sj}: neighbour start states
3: input S′ = {s′j}: neighbour end states
4: output J : set of neighbours with outliers removed
5: s̄′ ←Weighted Average(s, S, S′)
6: j ← arg max

j
d(s′j , s̄′), sj ∈ S′

7: dmax ← d(s′j , s̄′)
8: while dmax > δ do
9: S′ ← S′\s′j

10: S ← S\sj
11: s̄′ ←Weighted Average(s, S, S′)
12: j ← arg max

j
d(s′j , s̄′)

13: dmax ← d(s′j , s̄′)
14: end while
15: J = {j|s′j ∈ S′}

tuple whose end state s′ is the furthest from the weighted mean
of the end states. If this distance is further than a given δ, it is
identified as an outlier that should be ignored, and the process is
repeated. We use a hand-tuned value of δ = 0.05. The algorithm is
summarized in Algorithm 1.

Distance metric learning: The weights of the distance met-
ric and the kernel width, σλ, are learned via policy search with
CMA [Hansen 2006] using the most recently available set of tu-
ples, T . The free parameters for the optimization are defined by
φ = {µi} ∪ σ2

λ. The objective is measured by the cumulative per-
formance over a set of e = 10 environments:

φ∗ = arg max
φ

e∑
i=1

disti(φ)

where disti(φ) is the distance traveled on terrain i using the optimal
policy computed using the parameters φ. In order to avoid noise in
the objective function, the e terrains are randomly generated once
and then remain fixed.

Value iteration: Given a set of transition tuples, T , obtained us-
ing exploration, we use value iteration to compute a policy that is
optimal with respect to the observed tuples. While RL problems
having discrete actions spaces can employ full backup operations,
i.e., they can explicitly maximize over all possible actions, this is
not possible in a continuous action setting. We apply iterative batch
processing of updates based on positive temporal difference up-
dates, as summarized in Algorithm 2. For each transition tuple,
the temporal difference measures the net benefit of taking the tuple
transition as compared to the current value function estimate for the
state (line 10). For ’winning’ tuples having δ > 0, the value func-
tion is adapted and the tuple is identified as one that contributes to-
wards the optimal policy. Value iteration terminates when the max-
imum positive temporal difference seen on the current iteration is

Figure 5: Undesired averaging of neighboring actions.



Algorithm 2 Positive temporal difference value iteration
1: input T = {(si, ai, ri, s′i)}: state transition tuples
2: input α: learning rate
3: input γ: discount rate
4: output vi: value functions at si
5: output Πi = {true|false}: optimal policy tuple flag
6: vi ← 0 for all i
7: Πi ← false for all i
8: while not converged do
9: for all Ti do

10: δ = ri + γV̂ (s′i)− V̂ (si)
11: if δ > 0 then
12: vi ← vi + αδ
13: Πi ← true
14: else
15: vi ← vi + α(V̂ (si)− vi)
16: Πi ← false
17: end if
18: end for
19: end while

less than a given threshold, i.e., δ < 0.001. The final policy is com-
prised of the actions of the winning tuples, Tπ : {Ti|Πi = true}.

Exploration: Tuples are collected by using ε-greedy exploration
that is further divided into local exploration and global exploration.
In local exploration, new actions are constructed by introducing
perturbations to locally optimal actions and therefore the new ac-
tions will be similar to the actions that are suggested by the pol-
icy. The perturbations are sampled from a distribution that favors
changes that are correlated with nearby locally optimal actions, as
modeled by a multivariate Gaussian. For a given state s, a set of
policy tuples, T , the set of locally optimal actions are determined
by finding the neighbouring tuples,

N = {i|Ti ∈ T , d(s, si) < rmax}

where rmax defines a maximal radius of interest. The correlation
matrix, C, is constructed according to:

C = D−1

(
1

W

∑
i∈N

w(s, si)(ai − a)(ai − a)T
)
D−1

where W =
∑
i∈N w(s, si), w(s, si) are the kNN weights as de-

fined earlier, and D = diag(σ1, . . . , σn), and σ2
i are the variances

of the action vector as computed from all actions in all the policy
tuples, T ∗. The new action a′ is then determined according to:

a′ = a+D (C + νI)N(0, σ).

Here, νI acts as a regularizer to ensure that the resulting ma-
trix is full rank and also allows perturbations to move out of the
subspace spanned by the current local optimal actions. We use
rmax = 0.2, ν = 0.1, σ = 0.6.

Actions learned in one region of state space may also be effective in
other regions. This motivates a more global form of exploration, in
addition to local exploration, to allow for a better transfer of skills
between more distant regions of the state space. At each exploration
cycle, with a probability α, an action is chosen randomly from all
tuples in T ∗. The choice of actions at each cycle are summarized
as shown in Table 1.

Tuple Reduction: While the final control policy is defined by all
the winning tuples, it is possible to produce more compact policies

Probability Action
1− ε exploit policy

ε(1− α) local exploration
εα global exploration

Table 1: ε-greedy exploration actions. We use ε = 0.4, α = 0.3.

by removing many tuples that make only a negligible contribution.
First, some tuples may correspond to actions taken in rarely-visited
regions of the state space. For example, the initial random policy
will result in visiting states that are never again seen once the pol-
icy becomes more skilled. Second, some tuples may be redundant if
they correspond to on-policy experiences that repeatedly visit sim-
ilar areas of the state space. We only investigate the first type of re-
duction, namely removing rarely-used tuples, as quantified by run-
ning the policy for a fixed number of cycles (100k for the dog, 200k
for the biped). Any tuples that are not used by the kNN kernel dur-
ing this policy sampling are then tagged for removal. Other similar
strategies for producing a refined or reduced set of sample points
would also be possible, such as the approach suggested in [Levine
et al. 2012].

5 Action Parameterization

Our characters are modeled as articulated figures whose motion is
then simulated by applying torques at joints. The planar dog model
is composed of 21 links, has a total mass of 32.4 kg, and uses the
pelvis as the root link. The planar biped model has 7 links, a to-
tal mass of 50.4 kg and uses the torso as its root link. The mo-
tion is simulated using the Box2D physics engine [Box2D 2015]
at 3000 Hz using a coefficient of friction of 0.8. Torque limits are
500 Nm for the dog and 300 Nm for the biped.

The choice of action parameterization can significantly impact the
efficacy of reinforcement learning algorithms in continuous do-
mains. We develop actions using phase-based finite-state machines
(FSMs), as is common for locomotion controllers. An action con-
sists of a specific instantiation of the FSM that is selected at the
start of each locomotion cycle, and thus specifies a single leap for
the dog or a single running step for the biped. Within each motion
phase of the FSM, we use a mix of low-level features to control the
motion, e.g., desired joint angles, and abstract features, e.g., desired
leg forces.

Dog Actions: The basic dog actions are bounds or jumps, which
are segmented into four phases, as shown in Figure 6. State transi-
tions occur after a set period of time has elapsed, or after a particular
link makes contact with the ground. Upon contact of the hind foot,
the last action ends and the new action begins in the back-stance
phase. Within each phase, control is computed in terms of the joints
and features illustrated in Figure 7. The pelvis acts as the root link
and the orientation of every link is defined with respect to its par-
ent link, with the exception of the shoulder, hip, and ankles which
specify the orientation of their child links in world space. The orien-
tation of each joint is controlled using proportional-derivative (PD)
control to track specified joint trajectories. Joints that are not specif-
ically listed as control parameters simply track a fixed default angle
using PD control. The joints for the spine are controlled in a sim-
plified and coordinated fashion using a single curvature parameter
to set all the PD-target angles.

The dog’s legs also exert virtual forces that are realized by internal
torques computed via the Jacobian transpose. These torques are
then added to those supplied by the PD-controllers. The virtual
forces for the legs are applied only when their respective foot is in



Figure 6: Control states for the dog.

Figure 7: Control parameters for the dog.

contact with the ground and only during the appropriate respective
phases, i.e., the back leg will exert a virtual force only when the
back foot is contacting the ground during the back-stance phase.

In addition to applying a specified constant leg force, which is
treated as a free control parameter, each leg also applies gravity
compensation for all links supported by the leg. Links comprising
the front-half of the body are associated with the front leg and links
comprising the back-half of the body are associated with the hind
leg. Lastly, virtual force feedback is applied to guide the hip and
shoulder joints to a desired height with zero vertical velocity. In
total, the force exerted by one of the legs is given by:

Fleg = F0 + cd(h− h0) + cv(ḣ− ḣ0) + g
∑
i∈L

mi

where F0 is the force specified by the control parameters, h0 and
ḣ0 are the desired height and vertical velocity of the shoulder or
hip joint, and cv and cd are the distance and velocity gains for the
respective joint, and L is the set of links supported by the leg. Fleg

is then realized by applying internal torques, computed with the
Jacobian transpose, to the joints of each respective leg. When a foot
is not in contact with the ground, a balance feedback strategy based
on center-of-mass velocity, i.e., [Raibert and Hodgins 1991], is also
applied to adjust the target angle of the shoulder or hip according to
θ′ = θ0+cv(vcom−v0), where cv = 0.2 s rads/m and v0 = 4.0 m/s.
In total, the dog has a 28-dimensional action space, as defined by
the free parameters associated with each phase of the motion, as
listed in Table 2.

Biped Actions: The biped running FSM consists of two states for
each step, as shown in Figure 8. The action begins and ends with
a foot making contact with the ground to become the new stance
foot and transitions to the next state after 0.15s. The second state
ends when the swing foot makes contact with the ground to become
the new stance foot. The biped has the torso as its root link. Sim-
ilar to the dog, all joint angles are defined relative to their parent
links with the exception of the swing hip joint, which is specified

Action Parameter Active Phases
spine curvature 1,2,3,4
shoulder angle 1,2,3,4
elbow angle 1,2,3,4
hip angle 1,2,3,4
hock angle 1,2,3,4
hind foot angle 1,2,3,4
hind leg force (x, y) 1,3

Table 2: Dog Action Parameters. Phases 1,2,3,4 correspond to
Back Stance, Extend, Front Stance, and Gather, respectively.

Figure 8: Biped Finite State Machine.

in world space. The control parameters provide target angles for all
the joints, with the exception of the stance hip joint which is then
used to control the torso pitch.

As with the dog, a constant virtual force is applied when the stance
foot is in contact with the ground, implemented using the Jacobian
transpose. The stance leg also provides a vertical force for gravity
compensation. Lastly, foot-placement feedback [Yin et al. 2007] is
achieved via the swing hip as a function of the horizontal velocity
of the center of mass and its location relative to the stance foot:
θ′ = θ0+cv(vcom−v0)+cd(dcom−d0), where cv = 0.2 s rads/m,
v0 = 4.0 m/s, cd = 2.2 rad/m, and d0 = 0 m. The biped has
a 16-dimensional action space as defined by the free parameters
associated with each phase, listed in Table 3.

Initial Actions: A fixed number of initial actions are provided
to initialize the skill-learning pipeline. Since the environments re-
quire leaping over or onto obstacles, we generate a set of initial
actions, some of which are capable of fixed-speed bounding or run-
ning, and others of which are capable of a basic jump or leap. For
the dog, the initial actions are comprised of 4 bounds of various
speeds and 4 jumps of various distances. The bounds are developed
by uniformly-spaced interpolation between a slow bound and the
default bound, while the jumps are similarly developed by interpo-
lating between the default bound and a jump.

The default and slow bounds are optimized to maintain a desired
speed while minimizing the sum of torques applied to all joints.

Action Parameter Active Phases
torso pitch 1,2
swing hip 1,2
swing knee 1,2
swing ankle 1,2
stance hip 1,2
stance knee 1,2
stance ankle 1,2
stance leg force (x, y) 1

Table 3: Biped Action Parameters. Phases 1 and 2 correspond to
Stance and Swing, respectively.



This is captured by minimizing the following objective:∫ tmax

0

(wvEv(t) + wτEτ (t))dt

wherewv = 5,Ev(t) = (vcom(t)−v0)2,wτ = 5×10−8,Eτ (t) =∑
j τ

2
j (t). We use v0 = 4.0 m/s for the default bound and v0 =

2.0 m/s for the slow bound.

The jump is optimized for horizontal distance and effort by mini-
mizing the following objective:∫ tmax

0

(wvEv(t) + wτEτ (t))δjump(t)dt

where wv = 20, Ev(t) = −vroot, wτ = 1 × 10−9, Eτ is defined
as above, and

δjump =

{
1 : jump cycle is active
0 : otherwise

The optimization for the initial actions are solved using covari-
ance matrix adaptation (CMA), as implemented by the Shark li-
brary [Hansen 2006]. We expect that other derivative-free optimiza-
tion methods may also do well.

Initial actions are developed for the biped in a similar fashion with
the goal of providing reasonable initial running steps and leaps that
can then be further adapted. While developing good leap actions,
we noted this also benefits significantly from having dedicated an-
ticipatory and recover steps that precede and follow the leap. As
such, we initially model the leaps as extended actions that consist
of an (anticipate, leap, recover) action sequence. A pool of 8 actions
is then developed, consisting of: (a) 4 running speeds, as interpo-
lated between a default run (4 m/s) and a slow run (2 m/s); and (b)
4 leaps, as interpolated between a large leap extended action and
a no-leap extended action that is simply modeled using the default
run action for each of the (anticipate, leap, recover) actions. During
the initial random-policy exploration, actions are randomly chosen
from this pool of 8 actions. Once this has produced an initial pool
of transition tuples to work with, the notion of extended actions is
discarded, given that the tuple set then already contains example
action sequences for achieving large leaps.

6 Task Descriptions

Terrains: Skills are developed for multiple classes of terrain.
Within a given terrain class, the environments are randomly gener-
ated by drawing successive samples from uniform distributions over
the specified ranges for each feature. The gaps terrains for the dogs
consists of flat ground interruped by gaps of width w ∈ [1, 4] m.
Gaps have a depth of 2 m and are spaced at a distance d ∈ [4.5, 7] m
apart. The gaps terrains for bipeds are similarly defined using
w ∈ [0.5, 2] m and d ∈ [4.5, 7] m. The steps terrains for the
dog are defined by step heights h ∈ [−0.75, 0.75] m spaced at a
distance d ∈ [7, 10] m apart. The walls terrains for the dog is com-
posed of flat terrain populated with walls of width w = 0.5 m and
height h ∈ [0.25, 1] m that are spaced at a distance d ∈ [5, 12] m
apart. Similarly, the walls for the biped are defined by w = 0.25 m,
h ∈ [0.25, 0.5] m, and d ∈ [4, 7.5] m. The mixed terrains are con-
structed by successive uniform random selection of gap, wall, and
step features. The parameter ranges are the same as for the individ-
ual environments.

State description: The state consists of a concatena-
tion of a reduced character state and the terrain state.
For the dog, a 5-dimensional reduced state is defined by

Figure 9: State features for the dog and the biped.

Figure 10: Terrain features used in the state description.

(pcom.x, pcom.y, vcom.x, dfront, θtorso), as illustrated in Figure 9.
The terrain state is defined by 5 features, (d0, h0, d1, h1, d2), as
shown in Figure 10, where d0 is measured relative to the position
of the rear foot, which is always in a stance phase at the start
of an action. The final combined state representation is thus
10-dimensional.

Similarly, the biped uses a 6-dimensional reduced character state
description defined by (pstance, pswing, vcom.x, θtorso), as shown
in Figure 9. The terrain state is identical to that used for the dog,
with d0 being measured relative to the stance foot. The final com-
bined state is 11-dimensional.

Task rewards: The reward function for our terrain traversal tasks
is given by a function R(s, a, s′), i.e., it is a function of the start
state, end state, and chosen action, and it reflects the desirability of
the state transition. For brevity, we drop the (s, a, s′) dependencies
in the descriptions that follow. We begin by defining Rc(s, a, s′)
which contains terms that are common to the dog and biped reward
functions:

Rc =

{
0 : character falls

0.5 + wvEv + weEe + wsEs : otherwise

where Ev , Ee, and Es correspond to rewards (or penalties) for
velocity, effort, and stumbles, respectively, wv = 0.0002, we =
0.0004, ws = 0.0025,

Ev = clamp(
v̄

2
, 0, 1),

Ee = exp(10−6
∑

j∈joints

∫
τ2j dt),

Es = 1/(1 + 0.2n),

and n is the number of times the character stumbles during a given
action.

The reward function for the dog for a given bound or jump is then
defined by

Rdog =

{
0 : dog falls

Rc + wdEd : otherwise ,

where wd = 0.001,

Ed = clamp(2dedge, 0, 1),



and dedge is the distance to the leading edge of the nearest upcom-
ing obstacle in state s′, equivalent to d0..

The reward function for the biped for a given running step or leap
is defined by

Rbiped =

{
0 : biped falls

Rc + wpEp + wfEf : otherwise ,

where wp = 0.001, wf = 0.001,

Ep = 1− clamp(0.5(|θ| − 0.4), 0, 1),

θ is the pitch of the torso in state s′,

Ef =

{
min(3.3hclear, 1) : jumping over a wall

1 : otherwise ,

and hclear is the minimum clearance height of the feet above the
obstacle.

A discount factor of γ = 0.9 is used to compute the expected cu-
mulative rewards as modeled by the value function.

7 Results

We synthesize control policies for various terrains and characters.
Policies are computed in five phases: (1) initial exploration + syn-
thesis (ES) that collects 50k tuples (100k for the biped); (2) 65 it-
erations of ES, with 5k tuples/iteration; (3) distance metric opti-
mization; (4) 130 iterations of ES, with 5k tuples/iteration; and (5)
tuple-reduction. Approximately 1M total tuples are generated for
each scenario, resulting in ∼ 500k winning tuples and ∼ 300k tu-
ples after tuple-reduction. The full pipeline takes 25.6 hours for the
dog and 4.8 hours for the biped. The biped simulations are faster
because the biped has fewer links. The compute time for the dog
and biped is (17.9 h, 1.4 h) for distance metric optimization, (2.5 h,
2.9 h) for value iteration, (4.0 h, 0.4 h) for state exploration, and
(0.8 h, 0.1 h) for tuple reduction. These results are on an 8-core
machine, with a mulithreaded implementation for all phases.

The two videos which accompany this paper provide the best illus-
tration of the learned terrain traversal skills. Figures 11–13 show
the learned skills of the dog for traversing terrains with gaps, steps,
and walls. Separate policies are learned for each class of terrain. A
policy is also learned for a mixed terrain class that randomly mixes
gaps, steps, and walls, seen in Figure 14. Figures 15 and 16 simi-
larly illustrate the skills learned for the biped for traversing terrains
with walls and gaps.

Policy Approximation: In order to evaluate the importance of
kNN function approximation with outlier removal, we compare its
performance with a simple nearest-neighbor approach and also with
a kNN interpolation that does not remove outliers. Table 4 com-
pares the mean distance traveled for the three methods, as tested
on policies for different classes of terrain for both the biped (top)
and the dog (bottom). The kNN policy with outlier removal signif-
icantly outperforms the other interpolation methods. We speculate
that the simple NN policy suffers from overfitting to a single pol-
icy action, while a failure to remove outliers results in unintended
interpolation between actions that are significantly different, as pre-
viously described.

Global vs Local Exploration: We examine the effectiveness of
using global exploration as well as local exploration during the ε-
greedy exploration. We compare local-only with global+local ex-
ploration for learning policies for the dog+mixed, dog+gaps, and

scenario kNN + outlier removal NN kNN
dog + steps 704 275 52
dog + gaps 305 181 83
dog + walls 413 165 56
dog + mixed 237 154 55
biped + gaps 394 65 54
biped + walls 213 109 59

Table 4: Impact of outlier removal and interpolation on policy per-
formance. The performance is measured in terms of mean distance
travelled, in metres, before a fall, as computed on 128 terrains

feature uniform gaps steps walls mixed
d0 0.1 0.168 0.270 0.198 0.192
h0 0.1 0.068 0.263 0.017 0.068
d1 0.1 0.163 0.004 0.165 0.163
h1 0.1 0.156 0.006 0.118 0.274
d2 0.1 0.026 0.058 0.002 0.068
vcom,x 0.1 0.118 0.083 0.024 0.002
dfront 0.1 0.039 0.127 0.151 0.020
pcom,x 0.1 0.083 0.081 0.132 0.074
pcom,y 0.1 0.057 0.035 0.105 0.071
θtorso 0.1 0.122 0.073 0.088 0.068
σ2
λ 0.2 0.200 0.260 0.250 0.212

Table 5: Distance metric weights computed for the dog scenarios.

biped+gaps terrains. The results indicate no significant perfor-
mance difference for the dog scenarios, but better performance for
global+local for biped+gaps. We speculate that the utility of global
exploration depends on the degree to which actions are compatible
with a diverse range of states for a given application domain.

Distance Metric Optimization: The normalized weights that re-
sult from the distance metric optimization step in the learning
pipeline are given in Table 5. The features they weight have al-
ready been standardized with respect to their mean and standard
deviation. The first four features listed in the table are generally
weighted the most, indicating the importance of anticipating up-
coming terrain.

In Table 6 we compare the effect of running the learning pipeline as
we have defined it, i.e., with an optimized distance metric, and with
a default uniformly-weighted distance metric, i.e., skipping the dis-
tance metric optimization step. The results indicate the significant
performance benefit of the optimized distance metric.

In order to further determine the sensitivity of policies with respect
to the specific choice of distance metric, we evaluate the perfor-
mance of the learned dog + gaps policy when applied using the
distance metrics learned for each type of terrain, as well as with the
uniform distance metric. In these tests, we only change the distance
metric and do not rerun value iteration. The evaluation computes
the average distance traveled before a fall for 128 terrains. The re-
sulting performance measures are {305,279,256,141} m for { gaps,
mixed, walls, steps }, respectively. The best results are thus ob-

scenario uniform optimized
dog + gaps 196.8 304.5
dog + mixed 162.2 236.5
biped + gaps 223.6 394.3

Table 6: Performance impact of the distance metric, as measured
in mean distance travelled (m).



Figure 11: Dog traversing “gaps” terrain.

Figure 12: Dog traversing “steps” terrain.

Figure 13: Dog traversing “walls” terrain.

Figure 14: Dog traversing “mixed” terrain.

Figure 15: Biped traversing “walls” terrain.

Figure 16: Biped traversing “gaps” terrain.

tained with the distance metric optimized for the gaps terrain, with
the distance metric for the mixed terrain, which also contains gaps,
being a close second. The steps distance metric is poorly suited for
the gaps task. In order to test the importance of the body-state fea-
tures, i.e., features 6–10 in Table 5, we compute a modified version
of the gaps distance metric by assigning weights of zero to these
features and then renormalizing the remaining weights for features
1–5, i.e., the terrain features. We again evaluate this distance met-
ric for the dog + gaps policy, yielding an average distance of 83 m.
This poor performance is indicative of the body state being critical
to the final policy performance.

Discrete Action Sets vs Continuous Action Spaces: We also
evaluate the benefits that are afforded by a continuous action space
by comparing the policy performance to that of policies obtained
using a discrete action space, as defined by the set of initial actions
that we use to seed the learning process. For the discrete action
policy, the exploration steps now draw uniformly from the set of
discrete actions, and a voting scheme is used for policy approxima-
tion instead of kNN approximation.

We compare the discrete and continuous action policies for the dog
on several challenging terrain scenarios. The results are summa-
rized in Table 7 and are expressed in terms of the percentage of
obstacles traversed that result in failures as evaluated during 128
terrain episodes. The big gaps and big walls each have their con-
tinuous policies initialized using the set of 8 initial seed actions,
which also define the actions available to the discrete-action policy
that we compute for comparison. The results show that the discrete
policies fail at more than double the rate of continuous policies.

We also tested the ability of the pipeline to adapt jumps for new
situations by training it in the tight gaps terrain, which has gaps of
width w ∈ [1, 3] m and spaced at a distance d ∈ [2.5, 4] m. With
shorter recovery distances, the character is forced to jump before it
can return to more stable states. The results again illustrate that the
failure rate for the discrete-actions policy is double that of the con-
tinuous policy. Additionally, we tested the learning pipeline when
seeded with fewer initial actions. We developed a policy for the
dog in the regular gaps terrain using only 3 initial actions. The per-
formance of the final continuous policy is equivalent to that of the



name description continuous discrete
big gaps 5.75 m gaps 30% 64%
big walls 0.75 m walls 20% 52%
tight gaps gap spacing d ∈ [2.5, 4] m 5.4% 11.2%

Table 7: Performance comparison of continuous actions and dis-
crete action sets for the dog. The performance is given as the per-
centage of attempted object traversals that fail.

Figure 17: Histograms of the distance of the last foot contact from
the leading edge of a gap for the dog, as sampled for the continuous
policy (left) and the discrete policy (right).

continuous policy initialized with 8 actions: 303 m before a fall, vs
304 m before a fall. This indicates the ability of continuous action
exploration to do well even with very few initial actions.

We further investigate the benefits of continuous actions in two
other ways. Figure 17 gives histograms of the distance of the last
foot contact from the leading edge of a gap for the dog. When effort
is included in the objective function, we expect these distances to
be small because it allows for smaller, lower-effort jumps. Small
distances are thus better, although they also entail a risk of falling
into the gap, and negative distances indicate a jump into the gap.
As seen in Figure 17 (left), the histogram for the continuous policy
peaks at small positive distances, while the results for the discrete
policy are on average much further from the edge, and there are also
more negative-distance samples, i.e., failures.

Figure 18 gives a scatterplot of the jump effort as a function of
the gap size. The continuous policy shows a progressive increase
in effort as a function of gap size, while the discrete policy has
horizontal bands that correspond to the discrete actions. As a result,
the continuous policy is generally able to outperform the discrete
policy in terms of effort expended.

8 Conclusions

We have presented the successful application of reinforcement
learning (RL) to the control of dynamic jumping and leaping mo-

Figure 18: Effort vs gap size for the continuous policy (left) and
the discrete policy (right) for the dog gaps scenario.

tions for articulated figures across challenging terrains. We demon-
strate tuple-based non-parametric approximations, value iteration
based on positive temporal differences, and epsilon-greedy explo-
ration. Taken together, these can be an effective strategy for motion
control problems that are characterized by high-dimensional-and-
continuous state spaces and action spaces. Importantly, an embod-
ied state representation is used which contains both character state
features and environment features, and a distance metric is then
learned for this composite state representation. The use of corre-
lated epsilon-greedy exploration allows for new actions and new
states to be explored in a progressive fashion. An important aspect
for our problem domain is the use of outlier-culling in the policy
approximation, which avoids the undesired averaging of conflict-
ing actions.

Our method has a number of limitations that remain to be ad-
dressed. The majority of the compute time is spent on distance met-
ric optimization, although we expect that this could be reduced in a
variety of ways. We currently make use of non-trivial prior domain
knowledge when designing the action parameterization. An open
question is the degree to which similar results can be achieved with
more naive action parameterizations. We have made initial attempts
at extending the method to handle more generalized obstacles. For
example, it would be exciting if the policy could discover when it is
best to leap onto a “wall” and when it is best to leap over the wall.
We have not yet been successful with achieving well-performing
policies for such problems.

We believe that the current method can likely achieve 3D mo-
tions that are similar in nature to the current planar motions, i.e.,
where the terrain features and primary motion are predominantly
within the sagittal plane. We expect that many highly-dynamic,
momentum-based 3D motions would fit this characterization. How-
ever, motions on more arbitrary 3D terrains that require sharp turns
or that have restrictive foot placements are likely to require addi-
tional sophistication. Our non-parametric approach may be unable
to generate sufficient examples to cover the large space of possibil-
ities. We expect that such scenarios would benefit from online mo-
tion planning, something that is not yet part of our current method.

We wish to develop more aggressive strategies for culling experi-
ence tuples that do not make a significant contribution to the solu-
tion and to explore more sophisticated non-parametric representa-
tions. Convergence to an optimal policy or even local optima for
our CACLA-inspired algorithm is not yet guaranteed, although we
have not found convergence to be an issue. We wish to investigate
online motion planning as an alternative strategy for dealing with
more complex terrains,
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