
Interactive Control For Physically-Based Animation

Joseph Laszlo Michiel van de Panne Eugene Fiume

Department of Computer Science
University of Toronto1

Abstract

We propose the use of interactive, user-in-the-loop techniques for
controlling physically-based animated characters. With a suitably
designed interface, the continuous and discrete input actions afford-
ed by a standard mouse and keyboard allow for the creation of a
broad range of motions. We apply our techniques to interactively
control planar dynamic simulations of a bounding cat, a gymnas-
tic desk lamp, and a human character capable of walking, running,
climbing, and various gymnastic behaviors. The interactive control
techniques allows a performer’s intuition and knowledge about mo-
tion planning to be readily exploited. Video games are the current
target application of this work.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques— Interaction Techniques; I.3.7 [Computer Graphic-
s]: Three-Dimensional Graphics and Realism—Animation; I.6.8 [
Simulation and Modeling]: Types of Simulation—Animation

Keywords: physically based animation, user interfaces

1 Introduction
Interactive simulation has a long history in computer graphics, most
notably in flight simulators and driving simulators. More recently,
it has become possible to simulate the motion of articulated human
models at rates approaching real-time. This creates new opportu-
nities for experimenting with simulated character motions and be-
haviors, much as flight simulators have facilitated an unencumbered
exploration of flying behaviors.

Unfortunately, while the controls of an airplane or an automo-
bile are well known, the same cannot be said of controlling human
or animal motions where the interface between our intentions and
muscle actions is unobservable, complex, and ill-defined. Thus, in
order to create a tool which allows us to interactively experiment
with the dynamics of human and animal motions, we are faced with
the task of designing an appropriate interface for animators. Such
an interface needs to be sufficiently expressive to allow the creation
of a large variety of motions while still being tractable to learn.

Performance animation and puppetry techniques demonstrate
how well performers can manage the simultaneous control of a
large number of degrees of freedom. However, they are fundamen-
tally kinematic techniques; if considerations of physics are to be
added, this is typically done as a post-process. As a result, they do
not lend themselves well to giving a performer a sense of embodi-
ment for animated figures whose dynamics may differ significantly

1fjflaszlojvanjelfg@dgp.utoronto.ca
http://www.dgp.utoronto.ca/˜ jflaszlo/interactive-control.html

from that of the performer. In contrast, the physics of our simulated
characters constrains the evolution of their motions in significant
ways.

We propose techniques for building appropriate interfaces for
interactively-controlled physically-based animated characters. A
variety of characters, motions, and interfaces are used to demon-
strate the utility of this type of technique. Figure 1 shows an exam-
ple interface for a simple articulated figure which serves as a start-
ing point for our work and is illustrative of how a simple interface
can provide effective motion control.

Figure 1: Interactive control for Luxo, the hopping lamp.

Figure 2: Example of an interactively controlled back head-springs
and back-flip for Luxo.

Figure 3: Example of an interactively controlled animation, con-
sisting of hops across variable terrain and a carefully timed push
off the ski jump.

This planar model of an animated desk lamp has a total of 5
degrees of freedom (DOF) and 2 actuated joints, capable of exert-
ing joint torques. The motion is governed by the Newtonian laws
of physics, the internal joint torques, the external ground forces,
and gravity. The joint torques are computed using a proportional-
derivative (PD) controller, namely� = kp(�d � �) � kd _�. The
motions of the two joints are controlled by linearly mapping the
mouse position,(mx; my), to the two desired joint angles,�d.

Using this interface, coordinated motions of the two joints corre-
spond to tracing particular time-dependent curves with the mouse.
A rapid mouse motion produces a correspondingly rapid joint mo-
tion. With this interface one can quickly learn how to perform a
variety of interactively controlled jumps, shuffles, flips, and kips,
as well as locomotion across variable terrain. With sufficient prac-
tice, the mouse actions become gestures rather than carefully-traced
trajectories. The interface thus exploits both an animator’s motor
learning skills and their ability to reason about motion planning.

Figure 2 shows an example of a gymnastic tumbling motion cre-
ated using the interface. This particular motion was created using
several motioncheckpoints. As will be detailed later, these facilitate
correcting mistakes in executing particularly unstable or sensitive
motions, allowing the simultion to be rolled back to previous points
in time. Figure 3 shows a user-controlled motion over variable ter-
rain and then a slide over a ski jump, in this case performed without
the use of any checkpoints. The sliding on the ski hill is modelled
by reducing the ground friction coefficient associated with the sim-
ulation, while the jump is a combined result of momentum coming
off the lip of the jump and a user-controlled jump action.

This initial example necessarily provokes questions about scala-
bility, given that for more complex characters such as a horse or a
cat, one cannot hope to independently control as many input DOF
as there are controllable DOF in the model. One possible solu-
tion is to carefully design appropriate one-to-many mappings from
input DOF to output DOF. These mappings can take advantage of
frequently occuring synergetic joint motions as well as known sym-
metry and phase relationships.

We shall also explore the use of discrete keystrokes to comple-
ment and/or replace continuous input DOF such as that provided
by the mouse. These enrich the input space in two significant ways.
First, keys can each be assigned their own action semantics, thereby
allowing immediate access to a large selection of actions. This ac-
tion repertoire can easily be further expanded if actions are selected
based upon both the current choice of keystroke and the motion
context of the keystroke. Second, each keystroke also defineswhen
to perform an action as well as the selection ofwhat action. The
timing of keystrokes plays an important role in many of our proto-
type interfaces.

In its simplest form, our approach can be thought of as sitting
squarely between existing virtual puppetry systems and physically-
based animation. It brings physics to virtual puppetry, while bring-
ing interactive interfaces to physically-based animation. The sys-
tem allows for rapid, free-form exploration of the dynamic capabil-
ities of a given physical character design.

The remainder of this paper is structured as follows. Section 2 re-
views previous related work. Section 3 describes the motion primi-
tives used in our prototype system. Section 4 illustrates a variety of
results. Finally, section 5 provides conclusions and future work.

2 Previous Work

Building kinematic or dynamic motion models capable of repro-
ducing the complex and graceful movements of humans and an-
imals has long been recognized as a challenging problem. The
book Making Them Move[3] provides a good interdisciplinary
primer on some of the issues involved. Using physical simula-
tion techniques to animate human figures was proposed as early

as 1985[2]. Since then, many efforts have focussed on methods of
computing appropriate control functions for the simulated actuators
which will result in a desired motion being produced. Among the
more popular methods have been iterative optimization techniques
[8, 13, 19, 23, 29, 30], methods based on following kinematically-
specified reference trajectories [15, 16], suitably-designed state ma-
chines [9], machine learning techniques[14], and hybrids[5, 12].

A number of efforts have examined the interactive control of
dynamically-simulated articulated figures[10, 11] or procedurally-
driven articulated figures[6]. The mode of user interaction used in
these systems typically involves three steps: (1) setting or changing
specific parameters (2) running the simulation, and (3) observing
the result. This type of observe and edit tools is well suited to pro-
ducing highly specific motions. However, the interaction is less
immediate than we desire, and it does not lend a performer a sense
of embodiment in a character.

Motion capture and virtual puppetry both allow for user-in-the-
loop kinematic control over motions[17, 21, 24], and have proven
effective for specific applications demanding real-time animation.
The use of 2d user gestures to specify object motion[4] is in an
interesting early example of interactive computer mediated anima-
tion. Physical animatronic puppets are another interesting prece-
dent, but they cannot typically move in an uncontrained and dy-
namic fashion in their environment. The system described in [7] is
a novel application of using a haptic feedback device for animation
control using a mapping which interactively interpolates between
a set of existing animations. Our work aims to expand the scope
of interactive real-time interfaces by using physically-based simu-
lations, as well as exploring interfaces which allow various degrees
of motion abstraction. Such interfaces could then perhaps also be
applied to the control of animatronic systems.

The work of Troy[25, 26, 27] proposes the use of manual manip-
ulation of several input devices to perform low-level control of the
movement of bipedal characters. The work documents experiments
with a variety of input devices and input mappings as having been
performed, although detailed methods and results are unfortunate-
ly not provided for the manual control method. Nevertheless, this
work is among the first we know of that points out the potential of
user-in-the-loop control methods for controlling unstable, dynamic
motions such as walking.

Computer and video games offer a wide variety of interfaces
based both on continuous-input devices (mice, joysticks, etc.) and
button-presses and/or keystrokes. However, the current generation
of games do not typically use physically-based character anima-
tion, nor do they allow much in the way of fine-grained motion
control. Exceptions to the rule include fighting games such asDie
by the Sword[20] and Tekken[18]. The former allows mouse and
keyboard control of a physically-based model, limited to the mo-
tion of the sword arm. The latter, while kinematic in nature, affords
relatively low-level control over character motions. Telerobotic-
s systems[22] are a further suitable example of interactive control
of dynamical systems, although the robots involved are typically
anchored or highly stable, and are in general used in constrained
settings not representative of many animation scenarios.

3 Motion Primitives

The motion primitives used to animate a character can be charac-
terized along various dimensions, including their purpose and their
implementation. In this section we provide a classification based
largely on the various interface methods employed in our example
scenarios.

The joints of our simulated articulated figures are all controlled
by the use of PD controllers. Motion primitives thus control mo-
tions by varying the desired joint angles used by the PD controllers,
as well as the associated stiffness and damping parameters.

time

structure

state/environment

instant

interval

sequence of
intervals

joint

limb

inter-limb
coordination

robust to initial state

robust to future state

non-robust

Figure 4: Three dimensions of control abstraction.

PD controllers provide a simple, low-level control mechanism
which allows the direct specification of desired joint angles. Cop-
ing with more complex characters and motions necessitates some
form of abstraction. Figure 4 shows three dimensions along which
such motion abstraction can take place. The interfaces explored
in this paper primarily explore abstractions in time and structure
by using stored control sequences and coordinated joint motions,
respectively. The remaining axis of abstraction indicates the desir-
ability of motion primitives which perform correctly irrespective of
variations in the initial state or variations in the environment. This
third axis of abstraction is particularly challenging to address in an
automated fashion and thus our examples rely on the user-in-the-
loop to perform this kind of abstraction.

3.1 Continuous Control Actions

The most obvious way to control a set of desired joint angles is us-
ing an input device having an equivalent number of degrees of free-
dom. The mouse-based interface for the hopping lamp (Figure 1)
is an illustration of this. It is interesting to note for this particu-
lar example that although cursor coordinates are linearly mapped
to desired joint angles, a nonlinearity is introduced by the acceler-
ation features present in most mouse-drivers. This does not seem
to adversely impact the continuous control. In general, continuous
control actions are any mappings which make use of continuously
varying control parameters, and are thus not limited to direct map-
pings of input DOF to output DOF.

The availability of high DOF input devices such as data-gloves
and 6 DOF tracking devices means that the continuous control of
input DOF can potentially scale to control upwards of 20 degrees of
freedom. However, it is perhaps unreasonable to assume that a per-
former can learn to simultaneously manipulate such a large number
of DOF independently, given that precedents for interfaces in clas-
sical puppetry and virtual puppetry are typically not this ambitious.

3.2 Discrete Control Actions

Discrete actions, as implemented by keystrokes in our interfaces, al-
low for an arbitrary range of action semantics. Action games have
long made extensive use of keystrokes for motion specification, al-
though not at the level of detail that our interfaces strive to provide.
The following list describes the various action semantics used in
prototype interfaces, either alone or in various combinations. Some
of the actions in this list refer directly to control actions, while oth-
ers serve as meta-actions in that they modify parameters related to
the simulation and the interface itself.

set joint position (absolute) Sets desired position of joint or a set

of joints to a prespecified value(s). If all joints are set simul-
taneously in order to achieve a desired pose for the figure, this
becomes a form of interactive dynamic keyframing.

adjust joint position (relative) Changes the desired position of a
joint or set of joints, computed relative to current desired joint
positions.

grasp, releaseCauses a hand or foot to grasp or release a nearby
point (e.g., ladder rung) or to release a grasped point.

select IK target Selects the target point for a hand or foot to reach
toward using a fixed-time duration IK trajectory, modelled
with a Hermite curve. The IK solution is recomputed at every
time step.

initiate pose sequenceInitiate a prespecified sequence of full or
partial desired poses.

select next control stateAllows transitions between the states of
a finite-state machine; useful for modelling many cyclical or
otherwise well-structured motions, leaving the timing of the
transitions to the performer.

rewind, reset state Restarts the simulation from a previous state
checkpoint.

set joint stiffness and damping Sets the stiffness and damping
parameters of the PD joint controllers to desired values.

select control mode Chooses a particular mapping for a continu-
ous input device, such as which joints the mouse controls.

set simulation rate Speeds up or slows down the current rate of
simulation; helps avoid a motion happening ‘too fast’ or ‘too
slow’ to properly interact with it.

set state checkpointStores the system state (optionally during re-
play/review of a motion) so that simulation may be reset to
the same state later if desired.

modify physical parameters Effects changes to simulation pa-
rameters such as gravity and friction.

toggle randomized motion Begins or halts the injection of small
randomized movements, which are useful for introducing mo-
tion variation.

Our default model for arbitration among multiple actions which
come into conflict is to allow the most recent action to pre-empt any
ongoing actions. Ongoing actions such as IK-based trajectories or
pose sequences are respectively preempted only by new IK-based
trajectories or pose sequences.

3.3 State Machines

Given the cyclic or strongly structured nature of many motions, s-
tate machine models are useful in helping to simplify the complexi-
ties of interactive control. For example, they allow separate actions
such as ‘take left step’ and ‘take right step’ to be merged into a
single action ‘take next step’, where a state machine provides the
necessary context to disambiguate the action. As with many other
animations systems, state machines serve as the means to provide
apriori knowledge about the sequencing of actions for particular
classes of motion.

4 Implementation and Results

Our prototype system is based on a number of planar articulated
figures. The planar dynamics for these figures can easily be com-
puted at rates suitable for interaction (many in real-time) on most
current PCs and offer the additional advantage of having all aspects
of their motion visible in a single view, thereby providing unob-
structed visual feedback for the performer. Our tests have been
conducted primarily on a 450 Mhz Mac and a 366 Mhz PII PC.
While hard-coded interfaces were used with the original prototyp-
ing system behind many of our results, our more recent system uses
Tcl as a scripting language for specifying the details of any given
interface. This facilitates rapid iteration on the design of any given
interface, even potentially allowing changes during the course of a
simulation.

4.1 Luxo Revisited

Using the continuous-mode mouse-based interface shown in Fig-
ure 1, the desklamp is capable of executing a large variety of hops,
back-flips, a kip manoevre, head-stands, and motion across variable
terrain. This particular interface has been tested on a large number
of users, most of whom are capable of performing a number of the
simpler movements within 10–15 minutes, given some instruction
on using the interface. Increasing the stiffness of the joints or scal-
ing up the mapping used for translating mouse position into desired
joint angles results in the ability to perform more powerful, dynam-
ic movements, although this also makes the character seem rather
too strong during other motions.

We have additionally experimented with a keystroke-based in-
terface using 14 keys, each key invoking a short sequence of pre-
specified desired poses of fixed duration. The various key actions
result in a variety of hops and somersaults if executed from the ap-
propriate initial conditions. The repertoire of action sequences and
associated keystrokes are given in the Appendix. The animator or
performer must choose when to execute keystrokes and by doing so
selects the initial conditions. The initiation of a new action over-
rides any ongoing action.

The keystroke-based interface was created after gaining some
experience with the continuous-mode interface. It provides an in-
creased level of abstraction for creating motions and is easier to
learn, while at the same time trading away some of the flexibili-
ty offered by the continuous-mode interface. Lastly, user-executed
continuous motions can be recorded and then bound to a keystroke.

4.2 Animating a Cat

Experiments with a planar bounding cat and a planar trotting cat are
a useful test of scalability for our interactive interface techniques.
Figure 5 illustrates the planar cat as well as sets of desired angles
assumed by the legs for particular keystrokes. In one control mode,
the front and back legs each have 6 keys assigned to them, each of
which drives the respective leg to one of the 6 positions illustrated
in the figure. The keys chosen for each pose are assigned a spatial
layout on the keyboard which reflects the layouts of the desired pos-
es shown in the figure. An additional pose is provided which allows
each leg to exert a larger pushing force than is otherwise available
with the standard set of 6 poses. This can be achieved by temporar-
ily increasing the stiffness of the associated leg joints, or by using
a set of hyperextended joint angles as the desired joint positions.
We use the latter implementation. This seventh overextended pose
is invoked by holding the control key down when hitting the key
associated with the backwards extended leg pose.

The animation sequence shown in Figure 6 was accomplished
using 12checkpoints. A checkpoint lets the performer restart the

p1

p4p2

p3

rear leg fore leg

'q' 'w' 'e'

'a' 's' 'd'

'u' 'i' 'o'

'j' 'k' 'l'

Figure 5: Parameterization of limb movements for cat.

simulation from a given point in time, allowing the piecewise in-
teractive construction of sequences that would be too long or too
error-prone to perform successfully in one uninterrupted attemp-
t. Checkpoints can be created at fixed time intervals or at will by
the performer using a keystroke. Some of the sequences between
checkpoints required only 2 or 3 trials, while particularly difficult
aspects of the motion required 10–20 trials, such as jumping the
large gap and immediately climbing a set of steps (second-last row
of Figure 6).

The cat weighs 5kg and is approximately 50cm long, as mea-
sured from the tip of the nose to the tip of the tail. Its small size
leads to a short stride time and requires the simulation to be slowed
down considerably from real-time in order to allow sufficient reac-
tion time to properly control its motions. The cat motions shown
in Figure 6 were controlled using a slowdown factor of up to40�,
which allows for 10–15 seconds to control each bound.

It is important to note that there is a ‘sweet spot’ in choosing the
speed at which to interact with a character. Important features of
the dynamics become unintuitive and uncontrollable if the interac-
tion rate is either too slow or too fast. When the simulation rate
is too fast, the user is unable to react quickly enough to correct er-
rors before the motion becomes unsavable. When the motion is too
slow, the user tends to lose a sense of the necessary rhythm and tim-
ing required to perform the motion successfully and lacks sufficient
immediate feedback on the effects of the applied control actions.
For basic bounding, a slowdown factor around 10, giving a bound
time of 2-3 seconds is sufficient. For more complex motions such
as leaping over obstacles, a factor of up to 40+ is required.

Figure 7 shows a trotting motion for a planar 4-legged cat mod-
el. The trotting was interactively controlled using only the mouse.
Thex; y mouse coordinates are used to linearly interpolate between
predefined poses corresponding to the six leg poses shown in Fig-
ure 5. The poses are laid out in a virtual2 � 3 grid and bilinear
interpolation is applied between the nearest 4 poses according to
the mouse position. The simplest control method assumes a fixed
phase relationship among the 4-legs, allowing the mouse to simul-
taneously effect coordinated control of all legs. A more complex
method uses the same mapping to control one leg at a time. This
latter method met with less success, although was not pursued at
length. The cat model is comprised of 30 articulated links, which
makes it somewhat slow to simulate, given that we currently do not
employO(n) forward dynamics methods.

4.3 Bipedal Locomotion

We have experimented with a number of bipedal systems which
are capable of more human-like movements and behaviors such as
walking and running. For these models, we make extensive use

Figure 6: Cat bounding on variable terrain using piecewise interac-
tive key-based control. The frames shown are manually selected for
visual clarity and thus do not represent equal samples in time. The
arrows indicate when the various checkpoints were used, denoting
the position of the shoulders at the time of the checkpoint.

Figure 7: Cat trot using continuous mouse control. The animation
reads from top-to-bottom, left-to-right. The first seven frames rep-
resent a complete motion cycle. The frames are equally spaced in
time.

of a hybrid control technique which mixes continuous and discrete
input actions in addition to purely discrete methods similar to those
used with the cat and Luxo models. We have also experimented
with a wide variety of other bipedal motions in addition to walking
and running, including a number of motions such as a long jump
attempt and a fall-recovery sequence that are readily explored using
interactive control techniques.

Figure 8 shows the interface for an interactive walking control
experiment. The mouse is used to control the desired angles for the
hip and knee joints of the swing leg. A keypress is used to control
when the exchange of stance and swing legs occurs and therefore
changes the leg currently under mouse control. The stance leg as-
sumes a straight position throughout the motion. The bipedal figure
has human-like mass and dimensions, although it does not have a
separate ankle joint. In our current implementation, joint limits are
not enforced, although such constraints can easily be added to the
simulation as desired.

An example of the resulting motion is shown in Figure 9. With
some practice, a walk cycle can be sustained indefinitely. With sig-
nificant practice, the walk can be controlled in real-time, although
a simulation speed of 2–3 times slower than real-time provides a

left leg

right leg

(keypress)

(keypress)

Figure 8: Interface for interactive control of bipdal walking.

sweet-spot for consistent interactive control. It is also possible to
choose a particular (good) location for the mouse, thus fixing the
desired joint angles for the swing leg, and achieve a marching gait
by specifying only the the time to exchange swing and stance legs
by pressing a key. This marching motion is quite robust and is able
to traverse rugged terrain with reasonable reliability. Yet another
mode of operation can be achieved by automatically triggering the
swing-stance exchange when the forward lean of the torso exceeds
a fixed threshold with respect to the vertical. With this automatic
mechanism in place, it is then possible to transition from a march-
ing walk to a run and back again by slowly moving only the mouse
through an appropriate trajectory.

Figure 9: Bipedal walking motion

Figure 10 shows the results of a biped performing a long-jump
after such an automatic run. This particular biped dates from earlier
experiments and is smaller in size and mass than the more anthro-
pomorphic biped used for the walking experiments. This motion
makes use of the same interface as for the bipedal walking motion,
shown in in Figure 8. A slowdown factor of up to80 was necessary
because of the small size of the character, as well as the precision
required to achieve a final landing position having the legs extended
and the correct body pitch. Approximately 20 trials are required to
achieve a recognizable long jump, each beginning from a motion
checkpoint one step before the final leap. However, we anticipate
that the interface can be also be improved upon significantly by us-
ing a more reasonable default behavior for the uncontrolled leg.

Figure 10: A long jump attempt.

4.4 Bipedal Gymnastics

Several other experiments were carried out using the bipedal figures
with continuous-mode mouse control and one or more keys to select
the mapping of the continuous input onto the model’s desired joint
angles. The basic types of motion investigated include a variety
of climbing modes both with the bipedal model ”facing” the view
plane and in profile in the view plane, and swinging modes both
with arms together and separated. Nearly every mapping for these
control modes uses the mousey coordinate to simultaneously drive
the motion of all limb joints (hips, knees, shoulders and elbows)
in a coordinated fashion and the mousex coordinate to drive the
bending of the waist joint to alter the direction of the motion.

The control modes differ from each other primarily in the par-
ticular symmetries shared between the joints. Figure 11 illustrates
two forms of symmetry used for climbing ”gaits” similar in pat-
tern to those of a quadruped trotting and bounding. The mapping
of the mousex coordinate onto the waist joint is also shown. The
control modes can produce interactive climbing when coupled with
a state machine that grasps and releases the appropriate hands and
feet each time a key is pressed (assuming that the hands and feet are
touching a graspable surface). Swinging modes perform in a simi-
lar manner but use the mousex or y coordinate to swing the arms
either back-and-forth at the shoulder or in unison and can make use
of either graspable surfaces or ropes that the user can extend and re-
tract from each hand on demand. When used on the ground without
grasping, these same modes of interaction can produce a range of
gymnastic motions including handstands and different types of flips
and summersaults, in addition to a continuously controlled running
motion. Among the various interesting motions that are possible
is a backflip done by running off a wall, a gymnastic kip from a
supine position to a standing position and a series of giant swings as
might be performed on a high bar. While not illustrated here, these
motions are demonstrated in the video segments and CD-ROM an-
imations associated with this paper.

Figure 11: Control modes useful for climbing and gymnastics.

4.5 Using IK Primitives

Figures 12 and 13 illustrate interactively-controlled movements on
a set of irregularly-spaced monkeybars and a ladder, respectively.
These are movements which require more precise interactions of
the hands and feet with the environment than most of the other mo-
tions discussed to date. To deal with this, we introduce motion
primitives which use inverse kinematics (IK) to establish desired
joint angles.

In general, IK provides a rich, abstract motion primitive that
can appropriately hide the control complexity inherent in many

semantically-simple goal-directed actions that an interactive char-
acter might want to perform. This reduces the associated learning
curve the user faces in trying to discover how to perform the ac-
tion(s) from first principles while still taking good advantage of the
user’s intuition about the motion.

Figure 12: Traversing a set of irregularly-spaced monkeybars.

The interface for monkey-bar traversal consists of keystrokes and
a state machine. IK-based trajectories for the hands and feet are in-
voked on keystrokes. The hand-over-hand motion across the mon-
keybars is controlled by keys which specify one of three actions for
the next release-and-regrasp motion. The actions causes the hand
to release its grasp on the bar and move towards the previous bar,
the current bar, or the following bar. These actions can also be in-
voked even when the associated hand is not currently grasping a bar,
which allows the figure to recover when a grasp manoevre fails due
to bad timing. The interface does not currently safeguard against
the premature execution of a regrasp motion with one hand while
the other has not yet grasped a bar. The character will thus fall in
such situations. A grasp on a new bar is enacted if the hand passes
close to the target bar during the reaching action, where ‘close’ is
defined to be a fixed tolerance of 4 cm in our example. Controlling
the motion thus involves carefully choosing the time in a swing at
which a new reach-and-grasp action should be initiated, as well as
when to pull up with the current support arm. More information
about the particulars of the interface is given in the Appendix.

The ladder climbing example is made up of a number of keys
which serve to position the body using the hands and feet which
are in contact with the ladder, as well as a key to initiate the next
limb movement as determined by the state machine. The details
of the interface are given in the appendix, as well as the specific
keystroke sequence used to create Figure 13. Note, however, that
the keystroke sequence by itself is insufficient to precisely recreate
the given motion, as the timing of each keystroke is also important
in all the motions discussed.

Figure 13: Climbing a ladder.

Finally, Figure 14 illustrates a standing up motion, followed by
a few steps, a forward fall, crouching, standing up, and, lastly, a
backwards fall. A set of 18 keys serves as the interface for this
scenario, as documented in the appendix.

Figure 14: Fall recovery example.

5 Conclusions and Future Work

We have presented prototype interfaces for the interactive control of
physically-based character animation. The techniques illustrate the
feasibility of adding physics to virtual puppetry, or, alternatively,
adding interactive interfaces to physically-based animation. They
allow human intuition about motions to be exploited in the interac-
tive creation of novel motions.

The results illustrate that dynamic motions of non-trivial articu-
lated figure models can be reasonably controlled with user-in-the-
loop techniques. Our experiments to date have focussed on first
achieving a large action repertoire for planar figures, with the goal
of using this experience as a suitable stepping stone towards 3D
motion control. While it is not clear that the interaction techniques
will scale to the type of nuanced 3D motion control need for fore-
ground character animation in production animation, the interfaces
could be readily applied to a new generation of physically-based
interactive video games. The interfaces provide a compelling user
experience — in fact, we found the interactive control experiments
to be quite addictive.

One of the drawbacks of using interactive control is the effort re-
quired in both designing an appropriate interface and then learning
to effectively use the interface. These two nested levels of exper-
imentation necessitate a degree of expertise and patience. We are
optimistic that tractable interfaces can be designed to control sylis-
tic variations of complex motions and that animators or game play-
ers can learn these interfaces with appropriate training and practice.

Our work has many directions which require further investiga-
tion. We are still far from being able to reproduce nuanced dynam-
ic motions for 3D human or animal characters[1, 28]. The large
variety of high-DOF input devices currently available offers a pos-
sible avenue of exploration. Haptic devices may also play a useful
role in constructing effective interfaces[7]. Nuanced performance
may potentially require years of training, as it does for other arts
(key-frame animation, dancing, music) and sports. We can perhaps
expect that the instruments and interfaces required for composing
motion to undergo continual evolution and improvement. A large
community of users would offer the potential for a rapidly evolving
set of interfaces for particular motions or characters.

Many dynamic motions would benefit from additional sensory
feedback, such as an animated update of the location of the cen-
ter of mass[25]. Going in the opposite direction, one could use an
interactive environment like ours to conduct experiments as to the
minimal subset of sensory variables required to successfully control
a given motion. Questions regarding the transfer of skills between
interfaces and between character designs are also important to ad-
dress if broad adoption of interactive control techniques is to be
feasible.

The derivation of high-level abstractions of motion control is of
interest in biomechanics, animation, and robotics. The training data
and insight gained from having a user-in-the-loop can potentially

help in the design of autonomous controllers or high-level motion
abstractions. A variety of hybrid manual/automatic control methods
are also likely to be useful in animation scenarios.

Beyond its application to animation, we believe the system al-
so has potential uses in exploring deeper issues involved in con-
trolling motions for biomechanics, robotics, or animation. What
constitutes a suitable motor primitive or ‘motor program’? How
can these primitives be sequenced or overlaid in order to synthe-
size more complex motions? In what situations is a particular mo-
tion primitive useful? Our experimental system can serve as a tool
towards exploring these questions by allowing interactive control
over the execution and sequencing of user-designed motion-control
primitives.

Acknowledements: We would like to thank all of the following
for their help: the anonymous reviewers for their comments; the
Imager lab at UBC for hosting the second author during much of the
work on this paper; and David Mould for suggestions and assistance
investigating the automatic bipedal marching and running motions.
This work was supported by grants from NSERC and CITO.

A Appendix

Details of keystrokes interface for Luxo:
k small hop
l medium hop
o large hop
i high backward hop
u medium backward hop
j small backward hop
y back somersault
s sitting to upright (slow)
d standing to sitting / LB to sitting
f LB to standing (small height) / standing to sitting
e LB to standing (medium height) / standing to LB
w standing to sitting / sitting to LB / LB to standing
q big jump from base to LB / fwd somersault from LB
a LB to standing with small jump

A,B = a single action that performs either A or B
depending on initial state

LB = lying on back

Interface and keystrokes for monkeybar example:
a grasp rung previous to CR
s grasp CR
d grasp rung following CR
f grasp rung two rungs following CR
q release with both hands, relax arms
e pull up using support arm
R reset to initial state
t toggle defn of support/grasp arm

CR = closest rung

Interface and keystrokes for ladder climbing example:
q release both hands, fall from ladder
f grasp two rungs higher with next grasp arm
h shift body up
b lower body down
n pull body in with arms
g push body out with arms
j push body out with legs
m pull body in with legs
R reset to initial state

Interface and keystrokes for the fall recovery example:
p ST, prepare for forwards fall
o ST, prepare for backwards fall
t HK, step back with left arm
y HK, step back with right arm
q HK, shift body back
w HK, bend elbows, prepare for push up
W HK, straighten elbows, push up
1 CR, straighten hips, knees, ankles
2 CR, assume intermediate pose towards being upright
3 CR, assume final upright pose
c ST, step backwards with left leg
v ST, step forwards with left leg
b ST, step backwards with right leg
n ST, step forwards with right leg
j ST, lean back at hips
R reset to initial state
M checkpoint current state
L restart at checkpoint state

ST = standing
HK = on hands and knees
CR = crouched

References

[1] K. Amaya, A. Bruderlin, and T. Calvert. Emotion from mo-
tion. In Graphics Interface ’96, pages 222–229, May 1996.

[2] W. W. Armstrong and M. Green. The dynamics of articu-
lated rigid bodies for purposes of animation.Proceedings of
Graphics Interface ’85, pages 407–415, 1985.

[3] N. I. Badler, B. Barsky, and D. Zeltzer.Making Them Move.
Morgan Kaufmann Publishers Inc., 1991.

[4] R. M. Baecker. Interactive computer-mediated animation.
PhD thesis, Massachusetts Institute of Technology, 1969.

[5] A. Bruderlin and T. W. Calvert. Goal-directed anima-
tion of human walking. Proceedings of ACM SIGGRAPH,
23(4):233–242, 1989.

[6] A. Bruderlin and T. W. Calvert. Interactive animation of per-
sonalized human locomotion.Proceedings of Graphics Inter-
face, pages 17–23, 1993.

[7] B. R. Donald and F. Henle. Using Haptic Vector Fields for An-
imation Motion Control. Technical Report PCS-TR99-353,
Dartmouth College, Computer Science, Hanover, NH, May
1999.

[8] J. Auslander et al. Further experience with controller-based
automatic motion synthesis for articulated figures.ACM
Transactions on Graphics, October 1995.

[9] J. K. Hodgins et al. Animating human athletics.Proceedings
of SIGGRAPH 95, ACM Computer Graphics, pages 71–78,
1995.

[10] T. Ertl et al. Interactive control of biomechanical animation.
The Visual Computer, pages 459–465, 1993.

[11] D. Forsey and J. Wilhelms. Techniques for interactive ma-
nipulation of articulated bodies using dynamic analysis. In
Proceedings of Graphics Interface ’88, pages 8–15, 1988.

[12] M. Girard. Interactive design of computer-animated legged
animal motion. IEEE Comptuer Graphics and Applications,
7(6):39–51, June 1987.

[13] R. Grzeszczuk and D. Terzopoulos. Automated learning of
muscle-actuated locomotion through control abstraction.Pro-
ceedings of SIGGRAPH 95, ACM Computer Graphics, pages
63–70, 1995.

[14] R. Grzeszczuk, D. Terzopoulos, and G. Hinton. Neuroani-
mator: Fast neural network emulation and control of physics-
based models.Proceedings of SIGGRAPH 98, pages 9–20,
July 1998. ISBN 0-89791-999-8. Held in Orlando, Florida.

[15] H. Ko and N. Badler. Animating human locomotion with in-
verse dynamics.IEEE Computer Graphics and Applications,
pages 50–59, 1996.

[16] E. Kokkevis, D. Metaxas, and N. Badler. User-controlled
physics-based animation for articulated figures. InProceed-
ings of Computer Animation ’96, 1996.

[17] A. Menache. Understanding Motion Capture for Computer
Animation and Video Games. Morgan Kaufmann, 1999.

[18] Namco. Tekken, tekken2, and tekken3. computer game, 1998,
1999.

[19] J. T. Ngo and J. Marks. Spacetime constraints revisited.Pro-
ceedings of SIGGRAPH 93, pages 343–350, 1993.

[20] Interplay Productions. Die by the sword. computer game,
1998.

[21] M. Rosenthal. Dynamic digital hosts.Computer Graphics
World’s Digital Magic, pages 39–42, August 1998.

[22] T. B. Sheridan.Telerobotics, Automation, and Human Super-
visory Control. MIT Press, 1992.

[23] K. Sims. Evolving virtual creatures.Proceedings of SIG-
GRAPH 94, ACM Computer Graphics, pages 15–22, 1994.

[24] D. J. Sturman. Computer puppetry.IEEE Computer Graphics
and Applications, 18(1):38–45, January/February 1998.

[25] J. Troy. Dynamic Balance and Walking Control of Biped
Mechanisms. PhD thesis, Iowa State University, 1995.

[26] J. Troy. Real-time dynamic balancing and walking control
of a 7-link planar biped. InProceedings of ASME Design
Engineering Technical Conferences, 1998.

[27] J. Troy and M. Vanderploeg. Interactive simulation and con-
trol of planar biped walking devices. InWorkshop on Simula-
tion and Interaction in Virtual Environments, pages 220–224,
July 1995.

[28] M. Unuma, K. Anjyo, and R. Takeuchi. Fourier principles for
emotion-based human figure animation.Proceedings of SIG-
GRAPH 95, ACM Computer Graphics, pages 91–96, 1995.

[29] M. van de Panne and E. Fiume. Sensor-actuator networks.
Proceedings of SIGGRAPH 93, pages 335–342, 1993.

[30] M. van de Panne, R. Kim, and E. Fiume. Virtual wind-up toys
for animation.Proceedings of Graphics Interface ’94, pages
208–215, 1994.

