
1 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

"cs is just fancy string manipulation"

but categorical

Zach Goldthorpe

18 October 2019

2 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Strings

What are strings?

1 using string=char *;

practical : a pointer to the head of an array of chars
(but also a dated definition)

useless : char is a set of letters, and “∗” is the Kleene star
so

string = char∗ =
⋃
n≥0

charn

We’re rolling with the useless definition.
Fix an alphabet Σ (|Σ| > 1), then our set of strings is Σ∗.

3 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Turing Machines

What is a Turing machine?

Turing machines are defined by unrealistic and unhealthy beauty
standards for computers.

So are our strings right now, to be fair...

For us, a Turing machine M will just be a function

M : Σ∗ → Σ∗ t {"Segmentation fault (core dumped)"}

4 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Turing Machines

What are Turing machines supposed to do?
Definitely not machine learning...

1 void foo(int x, int y, int n) {

2 for (int k = 1; k <= n; ++k)

3 printf("%s%s%.d",

4 k%x?"":"Fizz",k%y?"":"Buzz",(k%x&&k%y)*k);

5 }

They are supposed to solve problems, but for simplicity let’s only
look at decision problems.

5 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Categories

What is a category?

Definition

A category C consists of

objects (e.g., X ,Y ,Z , . . .)

arrows between objects (e.g., f : X → Y)

so that

arrows can be composed (e.g., g ◦ f : X
f−→ Y

g−→ Z)

there is a “do nothing arrow” idX : X → X for every X

6 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Categories

Example (sets)

We have a category Set where

the objects of Set are sets

the arrows between sets X ,Y are the functions f : X → Y

Example (vector spaces)

Similarly we have a category VectR where

the objects of VectR are real vector spaces

the arrows are the linear transformations T : V →W

7 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Category of Fancy String Manipulation

Let’s define the category CS where

the objects of CS are sets of strings
hence subsets L ⊆ Σ∗

the morphisms L→ S are Turing machines M so that

M(x) ∈ S ⇐⇒ x ∈ L

8 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

(co)Recognition

“You’re discriminating against code I write!”

−→
CS “QA engineer isn’t paid enough”: x ∈ L =⇒ M(x) ∈ S and

x /∈ L =⇒ M(x) /∈ S or Segmentation fault

←−
CS “it’s a feature not a bug”: x /∈ L =⇒ M(x) /∈ S and

x ∈ L =⇒ M(x) ∈ S or Segmentation fault

←→
CS “I test in production”: M(x) ∈ S ⇐⇒ x ∈ L if M(x) runs

9 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

All of These Categories are Weird

Consider the empty set of strings ∅. What are arrows L→ ∅?

L Segmentation fault

L (whatever you want)

Consider the set of all strings Σ∗. What are arrows L→ Σ∗?

L (whatever you want)

L Segmentation fault

CS,
←−
CS,
−→
CS,
←→
CS all don’t have initial and terminal objects.

10 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Products

The (categorical) product of two sets (objects in Set) is something
we all know:

X × Y = {(x , y) :|: x ∈ X ; y ∈ Y }

In general:

A

X X × Y Y

f ∃!
g

projX projY

11 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Products

So how about in CS?
What you probably think: for strings α, β, let α G β be some
(fixed, computable) way of encoding the ordered pair (α, β), then
for L,S ⊆ Σ∗ set

L× S := {α G β :|: α ∈ L;β ∈ S}

This is great, but it’s missing nuance.

12 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Products

Theorem (you’re kinda right)

Let ∅ 6= L, S (Σ∗. If L× S exists, then for α ∈ L and β ∈ S ,
there must be a unique α G β ∈ L× S .

Proof (sketch).

{ε}

L L× S S

α β
M

projL projS

then α G β = M(ε).

13 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Products

How would we write projL : L× S → L?

1 string projL(string alpha, string beta) {

2 return alpha;

3 }

Foolish! If α ∈ L and β /∈ S , then α G β /∈ L× S , but
projL(α G β) = α ∈ L, so this is not an arrow L× S → L.

If β /∈ S , then any choice we make for projL(α G β) with α ∈ L
ruins the necessary uniqueness of the tupling Turing machine.
Guess CS is hopeless... (its variants too)

14 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

We Just Needed More Nuance

“[R]emember to look up at the stars and not down at your feet.”

—Stephen Hawking

What starts with an ‘h’ and ends in ‘ope’? Homotope!

Say two Turing machines M,N : L→ S are (homotopy) equivalent
if

M(x) = N(x) ∀x ∈ L (including segfaults)

15 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

CS is just slightly weak

We should really think of CS (and its variants) as a (2, 1)-category!

Definition

A (2, 1)-category C consists of

objects (e.g., X ,Y ,Z , . . .)

arrows between objects (e.g., f : X → Y)

equivalences between arrows (e.g., h : f ' g : X → Y)

so that

arrows can be composed (up to equivalence)

there is a “do nothing arrow” (up to equivalence)

16 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

What’s the Point?

“Arrow composition [et cetera] is defined up to equality in CS, so
haven’t we done nothing at all?”

Yes, we’ve done nothing!

17 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

The End

18 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Weaker Limits

Definition (terminal object)

An object 1 of a category is terminal if there is a unique arrow

X 1

I mentioned CS does not have a terminal object (nor does its
variants).

Definition (2-terminal object)

An object 1 of a (2, 1)-category is terminal if there is a unique
arrow

X 1

up to (unique) equivalence.

So, when CS is a (2, 1)-category, does it have a terminal object?

19 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Terminal Object

Set (as an ordinary category) has a terminal object: {∗}
VectR also has a terminal object in the same way: {0}

As a (2, 1)-category, does
←→
CS have a terminal object? ∅!

Any arrow L→ ∅ must segfault in L, and hence are all equivalent
to

1 void bar(void) {

2 for (;;); // the compiler is REALLY bad

3 }

This also shows
←−
CS has ∅ as its terminal object.

What about
−→
CS and CS? Maps L→ ∅ generally do not exist.

20 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Terminal Objects in CS

The terminal object would have to be a singleton (by its
uniqueness).

Let {>} be our candidate terminal object for CS (and
−→
CS).

By post-composing with

1 string baz(string l) {

2 return l==TOP ? l : BOT;

3 }

we need only consider arrows L→ {>} sending:

L >

L ⊥

Can you decide if CS has a terminal object?

Can you recognise a terminal object for
−→
CS?

21 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Terminal Objects in CS

The Halting Problem shows that CS does not have a terminal
object.

However, the full (2, 1)-subcategory of decidable languages in CS
does!

Likewise, the full (2, 1)-subcategory of recognisable languages in
−→
CS has the same terminal object.

22 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Products in CS

A product of objects in a (2, 1)-category is a mouthful:

A

X X × Y Y

f g

projX projY

∼ ∼

Theorem

Let ∅ 6= L 6= Σ∗ be decidable, and S 6= Σ∗. Then, the following
are equivalent:

(i) S is decidable

(ii) L× S exists in CS

(iii) L× S exists and is decidable in CS

23 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Edge Cases

Theorem

Let ∅ 6= L 6= Σ∗ be decidable, and S 6= Σ∗. Then, the following
are equivalent:

(i) S is decidable

(ii) L× S exists in CS

(iii) L× S exists and is decidable in CS

The only product with Σ∗ that exists is with Σ∗, or else the
projection maps do not work.
If S 6= Σ∗, then ∅× S = ∅ no matter what S was.

24 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Proof Sketch

If L,S are decidable, and we know `0 ∈ L while `1 /∈ L, then the
projections are given by:

1 string projL(string x, string y) { // TODO: projS

2 return memberL(x) && memberS(y) ? x : ELL_1;

3 }

It’s clear how to decide if x G y ∈ L× S as well.
If L× S is decidable, then we can decide S :

1 bool memberS(string y) {

2 return memberL(projL(ELL_0, y));

3 }

25 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

Conclusion

the structure of CS is too weak for ordinary category theory

it’s no coincidence that the objects of CS are sets of strings

you need fancy string manipulation (Turing machines) to
study CS

26 / 26

Computer Science Mathematics String Manipulation Higher Category Theory Fin

The End

	Computer Science
	Strings
	Turing Machines
	Problems

	Mathematics
	Category Theory
	Examples

	String Manipulation
	Category of Problems
	Recognisable and Co-Recognisable
	They're All Weird
	Products

	Higher Category Theory
	(2,1)-category
	Weaker Limits
	Recognisable and Decidable Languages
	Products

	Fin

