"cs is just fancy string manipulation"

but categorical

Zach Goldthorpe

18 October 2019

Computer Science
°

Strings

What are strings?

1+ using string=char *;

practical : a pointer to the head of an array of chars
(but also a dated definition)

useless : char is a set of letters, and “x" is the Kleene star
o)
string = char® = U char”
n>0

We're rolling with the useless definition.
Fix an alphabet X (|X| > 1), then our set of strings is X*.

Computer Science
.

Turing Machines

What is a Turing machine?

Turing machines are defined by unrealistic and unhealthy beauty
standards for computers.

So are our strings right now, to be fair...

For us, a Turing machine M will just be a function

M :¥X* — ¥* U {"Segmentation fault (core dumped)"}

Computer Science
°

Turing Machines

What are Turing machines supposed to do?
Definitely not machine learning...

+ void foo(int x, int y, int n) {

2 for (int k = 1; k <= n; ++k)

3 printf ("%s%sk.d",

4 k)x?"": "Fizz" kjy?"": "Buzz", (k%x&&k%y) *k) ;
s}

They are supposed to solve problems, but for simplicity let’s only
look at decision problems.

Mathematics
°

Categories

What is a category?

Definition
A category € consists of

@ objects (e.g., X,Y,Z,...)

@ arrows between objects (e.g., f : X — Y)
so that

@ arrows can be composed (e.g., gof : X Ly s Z)

@ there is a “do nothing arrow” idx : X — X for every X

Mathematics
.

Categories

Example (sets)

We have a category Set where
@ the objects of Set are sets

@ the arrows between sets X, Y are the functions f : X —» Y

Example (vector spaces)

Similarly we have a category Vectr where

@ the objects of Vecty are real vector spaces

@ the arrows are the linear transformations T : V — W

String Manipulation
.

Category of Fancy String Manipulation

Let's define the category CS where

@ the objects of CS are sets of strings
hence subsets L C ¥>*

@ the morphisms L — S are Turing machines M so that

M(x)eS < xelL

String Manipulation
.

(co)Recognition

“You're discriminating against code | write!”

cﬁ “QA engineer isn't paid enough”: x € L = M(x) € S and

x¢ L = M(x) ¢ S or Segmentation fault

CS “it's a feature not a bug": x¢ L = M(x) ¢ S and

x €Ll = M(x) € S or Segmentation fault

€S I test in production”: M(x) € S <= x € L if M(x) runs

String Manipulation
°

All of These Categories are Weird

Consider the empty set of strings @. What are arrows L — @7

L ———— Segmentation fault

L ———— (whatever you want)

Consider the set of all strings ¥*. What are arrows L — ¥*7

L ——— (whatever you want)

[— Segmentation fault

CS, & c? & all don't have initial and terminal objects.

String Manipulation
©000

Products

The (categorical) product of two sets (objects in Set) is something
we all know:

XxY={(x,y)::xeX,yeY}

In general:

String Manipulation
0®00

Products

So how about in CS?

What you probably think: for strings «, 3, let « () 3 be some
(fixed, computable) way of encoding the ordered pair («, 3), then
for L,S C X* set

LxS={a(f:aclL,peS}

This is great, but it's missing nuance.

String Manipulation
ooeo

Products

Theorem (you're kinda right)

Let @ # L,S C ¥X*. If L x S exists, then forow € L and 3 € S,
there must be a unique o) B € L x S.

Proof (sketch).

L+——LxS—— S
proj, projs

then a § B = M(e). O

String Manipulation
oooe

Products

How would we write proj, : L x § — L?

. string projL(string alpha, string beta) {
2 return alpha;

s}

Foolish! If « € Land 5 ¢ S, thena () B ¢ L x S, but
projL(a (B) = a € L, so this is not an arrow L x S — L.

If 3¢S, then any choice we make for proj, (a () B) with v € L
ruins the necessary uniqueness of the tupling Turing machine.
Guess CS is hopeless... (its variants too)

Higher Category Theory
©000

We Just Needed More

“[Rlemember to look up at the stars and not down at your feet.”

—Stephen Hawking

What starts with an ‘h’ and ends in ‘ope’? Homotope!

Say two Turing machines M, N : L — S are (homotopy) equivalent
if
M(x) = N(x) Vx € L (including segfaults)

Higher Category Theory
0®00

CS is just slightly weak

We should really think of CS (and its variants) as a (2, 1)-category!

Definition

A (2,1)-category € consists of

@ objects (e.g., X,Y,Z,...)

@ arrows between objects (e.g., f : X = Y)

@ equivalences between arrows (e.g., h: f~g: X = Y)
so that

@ arrows can be composed (up to equivalence)

@ there is a “do nothing arrow” (up to equivalence)

Higher Category Theory
[eleY 1)

What's the Point?

“Arrow composition [et cetera] is defined up to equality in CS, so
haven't we done nothing at all?”

Yes, we've done nothing!

Higher Category Theory
oooe

THE END

Higher Category Theory
[1o}

Weaker Limits

Definition (terminal object)

An object 1 of a category is terminal if there is a unique arrow

| mentioned CS does not have a terminal object (nor does its
variants).

An object 1 of a (2, 1)-category is terminal if there is a unique
arrow

up to (unique) equivalence.

So, when CS is a (2, 1)-category, does it have a terminal object?

Higher Category Theory
oe

Terminal Object

Set (as an ordinary category) has a terminal object: {x}
Vecty also has a terminal object in the same way: {0}

As a (2,1)-category, does @ have a terminal object? o!
Any arrow L — & must segfault in L, and hence are all equivalent
to

1 void bar(void) {
2 for (;;); // the compiler is REALLY bad

s}

This also shows & has @ as its terminal object.

What about E§ and CS? Maps L — & generally do not exist.

Higher Category Theory
[1}

Terminal Objects in CS

The terminal object would have to be a singleton (by its
uniqueness).

Let {T} be our candidate terminal object for CS (and @)
By post-composing with

1 string baz(string 1) {
2 return 1==TOP 7 1 : BOT;
s ¥

we need only consider arrows L — {T} sending:
L —— T
L— L

Can you decide if CS has a terminal object?
Can you recognise a terminal object for CS?

Higher Category Theory
oe

Terminal Objects in CS

The Halting Problem shows that CS does not have a terminal
object.

However, the full (2, 1)-subcategory of decidable languages in CS
does!

Likewise, the full (2, 1)-subcategory of recognisable languages in
Eg has the same terminal object.

Higher Category Theory
®00

Products in CS

A product of objects in a (2,1)-category is a mouthful:

A
f | g
< v
X+—XxY —Y
proj proj

Let @ # L # ¥* be decidable, and S # ¥*. Then, the following
are equivalent:

@ S is decidable
® L xS existsin CS
@ L xS exists and is decidable in CS

Higher Category Theory
oeo

Edge Cases

Let @ # L # Y be decidable, and S = ¥X*. Then, the following
are equivalent:

@ S is decidable

® L xS existsinCS
@ L xS exists and is decidable in CS

The only product with ¥* that exists is with *, or else the
projection maps do not work.
If S # X% then @ X S = & no matter what S was.

Higher Category Theory
ocoe

Proof Sketch

If L, S are decidable, and we know ¢y € L while ¢1 ¢ L, then the
projections are given by:

i string projL(string x, string y) { // TODO: projs
2 return memberL(x) && memberS(y) ? x : ELL_1;
s}

It's clear how to decide if x { y € L X S as well.
If L x S is decidable, then we can decide S:

+ bool memberS(string y) {
2 return memberL (projL(ELL_O, y));
s}

Conclusion

@ the structure of CS is too weak for ordinary category theory
@ it's no coincidence that the objects of CS are sets of strings

@ you need fancy string manipulation (Turing machines) to
study CS

THE END

	Computer Science
	Strings
	Turing Machines
	Problems

	Mathematics
	Category Theory
	Examples

	String Manipulation
	Category of Problems
	Recognisable and Co-Recognisable
	They're All Weird
	Products

	Higher Category Theory
	(2,1)-category
	Weaker Limits
	Recognisable and Decidable Languages
	Products

	Fin

