Computer Science	Mathematics 00	String Manipulation	Higher Category Theory	Fin 00

"cs is just fancy string manipulation" but categorical

Zach Goldthorpe

18 October 2019

Computer Science ●○○	Mathematics 00	String Manipulation	Higher Category Theory	Fin 00
Strings				

What are strings?

using string=char *;

practical : a pointer to the head of an array of chars (but also a dated definition) useless : char is a set of letters, and "*" is the Kleene star so $string = char^* = \bigcup_{n>0} char^n$

We're rolling with the useless definition. Fix an alphabet Σ ($|\Sigma| > 1$), then our set of strings is Σ^* .

Computer Science ○●○	Mathematics 00	String Manipulation	Higher Category Theory	Fin 00
Turing Machi	nes			

What is a Turing machine?

Turing machines are defined by unrealistic and unhealthy beauty standards for computers.

So are our strings right now, to be fair...

For us, a Turing machine M will just be a function

 $M: \Sigma^* \to \Sigma^* \sqcup \{ "\texttt{Segmentation fault (core dumped)"} \}$

Computer Science ○○●	Mathematics 00	String Manipulation	Higher Category Theory	Fin 00
Turing Machi	nes			

What are Turing machines supposed to do? *Definitely not machine learning...*

They are supposed to solve problems, but for simplicity let's only look at decision problems.

Computer Science	Mathematics ●○	String Manipulation	Higher Category Theory	Fin 00
Categories				

What is a category?

Definition

A category ${\mathscr C}$ consists of

- objects (e.g., *X*, *Y*, *Z*,...)
- arrows between objects (e.g., $f: X \to Y$)

so that

- arrows can be composed (e.g., $g \circ f : X \xrightarrow{f} Y \xrightarrow{g} Z$)
- there is a "do nothing arrow" $\operatorname{id}_X : X \to X$ for every X

Computer Science	Mathematics ○●	String Manipulation	Higher Category Theory	Fin 00
Categories				

Example (sets)

We have a category Set where

- the objects of **Set** are sets
- the arrows between sets X, Y are the functions $f: X \to Y$

Example (vector spaces)

Similarly we have a category $\textbf{Vect}_{\mathbb{R}}$ where

- \bullet the objects of $\textbf{Vect}_{\mathbb{R}}$ are real vector spaces
- the arrows are the linear transformations $T: V \rightarrow W$

Category of Fancy String Manipulation

Let's define the category $\boldsymbol{\mathsf{CS}}$ where

- the objects of CS are sets of strings hence subsets L ⊆ Σ*
- the morphisms $L \rightarrow S$ are Turing machines M so that

$$M(x) \in S \iff x \in L$$

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory	Fin 00
(co)Recogniti	ion			

"You're discriminating against code I write!"

$$\overrightarrow{\text{CS}} \text{ "QA engineer isn't paid enough"}: x \in L \implies M(x) \in S \text{ and}$$
$$x \notin L \implies M(x) \notin S \text{ or Segmentation fault}$$
$$\overleftarrow{\text{CS}} \text{ "it's a feature not a bug"}: x \notin L \implies M(x) \notin S \text{ and}$$
$$x \in L \implies M(x) \in S \text{ or Segmentation fault}$$

CS "I test in production": $M(x) \in S \iff x \in L$ if M(x) runs

Consider the empty set of strings \emptyset . What are arrows $L \to \emptyset$?

 $L \longrightarrow$ Segmentation fault

 $\overline{L} \longrightarrow$ (whatever you want)

Consider the set of all strings Σ^* . What are arrows $L \to \Sigma^*$?

 $L \longrightarrow$ (whatever you want)

 $\overline{L} \longrightarrow \texttt{Segmentation fault}$

CS, \overleftarrow{CS} , \overrightarrow{CS} , \overleftarrow{CS} all don't have initial and terminal objects.

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory	Fin 00
Products				

The (categorical) product of two sets (objects in **Set**) is something we all know:

 $X \times Y = \{(x, y) : | : x \in X; y \in Y\}$

In general:

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory	Fin 00
Products				

So how about in **CS**?

What you probably think: for strings α, β , let $\alpha \[0.5mm] \beta$ be some (fixed, computable) way of encoding the ordered pair (α, β) , then for $L, S \subseteq \Sigma^*$ set

$$L \times S := \{ \alpha \ \Diamond \ \beta : | : \alpha \in L; \beta \in S \}$$

This is great, but it's missing *nuance*.

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory	Fin 00
Products				

Theorem (you're kinda right)

Let $\emptyset \neq L, S \subsetneq \Sigma^*$. If $L \times S$ exists, then for $\alpha \in L$ and $\beta \in S$, there must be a unique $\alpha \big) \beta \in L \times S$.

Computer Science	Mathematics 00	String Manipulation ○○○○○○●	Higher Category Theory	Fin 00
Products				

```
How would we write \text{proj}_L : L \times S \rightarrow L?

string \text{projL}(\text{string alpha}, \text{string beta}) {

return alpha;

}
```

Foolish! If $\alpha \in L$ and $\beta \notin S$, then $\alpha \bar{\setminus} \beta \notin L \times S$, but projL $(\alpha \bar{\setminus} \beta) = \alpha \in L$, so this is not an arrow $L \times S \to L$.

If $\beta \notin S$, then any choice we make for $\operatorname{proj}_L(\alpha \[0.5mm] \beta)$ with $\alpha \in L$ ruins the necessary uniqueness of the tupling Turing machine. Guess **CS** is hopeless... (its variants too) "[R]emember to look up at the stars and not down at your feet."

-Stephen Hawking

What starts with an 'h' and ends in 'ope'? Homotope!

Say two Turing machines $M, N : L \to S$ are (homotopy) equivalent if

 $M(x) = N(x) \ \forall x \in L$ (including segfaults)

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory ○●○○○○○○○○	Fin 00
CS is just sli	ghtlv weak			

We should really think of **CS** (and its variants) as a (2, 1)-category!

Definition

- A (2,1)-category ${\mathscr C}$ consists of
 - objects (e.g., *X*, *Y*, *Z*,...)
 - arrows between objects (e.g., $f: X \to Y$)
 - equivalences between arrows (e.g., $h: f \simeq g: X \rightarrow Y$)

so that

- arrows can be composed (up to equivalence)
- there is a "do nothing arrow" (up to equivalence)

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory 00●0000000	Fin 00
What's the P	oint?			

"Arrow composition [et cetera] is defined up to equality in **CS**, so haven't we done nothing at all?"

Yes, we've done nothing!

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory	Fin 00

The End

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory ○○○○●○○○○○○	Fin 00
Weaker Limit	.s			

Definition (terminal object)

An object 1 of a category is terminal if there is a unique arrow

$$X \dashrightarrow 1$$

I mentioned **CS** does not have a terminal object (nor does its variants).

Definition (2-terminal object)

An object 1 of a (2,1)-category is terminal if there is a unique arrow

$$X \dashrightarrow 1$$

up to (unique) equivalence.

So, when **CS** is a (2,1)-category, does it have a terminal object?

Set (as an ordinary category) has a terminal object: $\{*\}$ Vect_R also has a terminal object in the same way: $\{0\}$

As a (2, 1)-category, does \overleftarrow{CS} have a terminal object? \varnothing ! Any arrow $L \to \varnothing$ must segfault in L, and hence are all equivalent to

```
void bar(void) {
for (;;); // the compiler is REALLY bad
}
```

This also shows \overleftarrow{CS} has \varnothing as its terminal object.

What about \overrightarrow{CS} and \overrightarrow{CS} ? Maps $L \rightarrow \emptyset$ generally do not exist.

By post-composing with

```
string baz(string l) {
    return l==TOP ? l : BOT;
}
```

we need only consider arrows $L \to \{\top\}$ sending:

Can you decide if **CS** has a terminal object? Can you recognise a terminal object for \overrightarrow{CS} ?

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory ○○○○○○○●○○○	Fin 00
Terminal Ob	ojects in CS	5		

The Halting Problem shows that $\ensuremath{\textbf{CS}}$ does not have a terminal object.

However, the full (2,1)-subcategory of decidable languages in CS does!

Likewise, the full (2,1)-subcategory of recognisable languages in $\overrightarrow{\textbf{CS}}$ has the same terminal object.

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory ○○○○○○○●○○	Fin 00
Products in C	CS			

A product of objects in a (2, 1)-category is a mouthful:

Theorem

Let $\emptyset \neq L \neq \Sigma^*$ be decidable, and $S \neq \Sigma^*$. Then, the following are equivalent:

- S is decidable
- $L \times S \text{ exists in } \mathbf{CS}$
- L × S exists and is decidable in CS

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory ○○○○○○○○○○	Fin 00
Edge Cases				

Theorem

Let $\emptyset \neq L \neq \Sigma^*$ be decidable, and $S \neq \Sigma^*$. Then, the following are equivalent:

- **()** *S* is decidable
- **(i)** $L \times S$ exists in **CS**
- L × S exists and is decidable in CS

The only product with Σ^* that exists is with $\Sigma^*,$ or else the projection maps do not work.

If $S \neq \Sigma^*$, then $\varnothing \times S = \varnothing$ no matter what S was.

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory	Fin 00
Proof Sketch				

- If L, S are decidable, and we know $\ell_0 \in L$ while $\ell_1 \notin L$, then the projections are given by:
- string projL(string x, string y) { // TODO: projS
 return memberL(x) && memberS(y) ? x : ELL_1;
 }

```
It's clear how to decide if x \notin y \in L \times S as well.
If L \times S is decidable, then we can decide S:
```

```
1 bool memberS(string y) {
2     return memberL(projL(ELL_0, y));
3 }
```

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory	Fin ●0
Conclusion				

- \bullet the structure of $\boldsymbol{\mathsf{CS}}$ is too weak for ordinary category theory
- $\bullet\,$ it's no coincidence that the objects of CS are sets of strings
- you need fancy string manipulation (Turing machines) to study **CS**

Computer Science	Mathematics 00	String Manipulation	Higher Category Theory	Fin ⊙●

The End