"cs is just fancy string manipulation" but categorical

Zach Goldthorpe

18 October 2019

Strings

What are strings?
1 using string=char *;
practical : a pointer to the head of an array of chars (but also a dated definition)
useless : char is a set of letters, and " $*$ " is the Kleene star SO

$$
\text { string }=\text { char }^{*}=\bigcup_{n \geq 0} \operatorname{char}^{n}
$$

We're rolling with the useless definition.
Fix an alphabet $\Sigma(|\Sigma|>1)$, then our set of strings is Σ^{*}.

Turing Machines

What is a Turing machine?

Turing machines are defined by unrealistic and unhealthy beauty standards for computers.

So are our strings right now, to be fair...

For us, a Turing machine M will just be a function
$M: \Sigma^{*} \rightarrow \Sigma^{*} \sqcup\{$ "Segmentation fault (core dumped)" $\}$

Turing Machines

What are Turing machines supposed to do?
Definitely not machine learning...

```
void foo(int \(x\), int \(y\), int \(n\) ) \{
    for (int k = 1; k <= n; ++k)
        printf("\%s\%s\%.d",
        k\%x?"":"Fizz", k\%y?"": "Buzz", (k\%x\&\&k\%y)*k) ;
```

\}

They are supposed to solve problems, but for simplicity let's only look at decision problems.

Categories

What is a category?

Definition

A category \mathscr{C} consists of

- objects (e.g., X, Y, Z, \ldots)
- arrows between objects (e.g., $f: X \rightarrow Y$)
so that
- arrows can be composed (e.g., $g \circ f: X \xrightarrow{f} Y \xrightarrow{g} Z$)
- there is a "do nothing arrow" id $X: X \rightarrow X$ for every X

Categories

Example (sets)

We have a category Set where

- the objects of Set are sets
- the arrows between sets X, Y are the functions $f: X \rightarrow Y$

Example (vector spaces)

Similarly we have a category $\operatorname{Vect}_{\mathbb{R}}$ where

- the objects of $\operatorname{Vect}_{\mathbb{R}}$ are real vector spaces
- the arrows are the linear transformations $T: V \rightarrow W$

Category of Fancy String Manipulation

Let's define the category CS where

- the objects of CS are sets of strings hence subsets $L \subseteq \Sigma^{*}$
- the morphisms $L \rightarrow S$ are Turing machines M so that

$$
M(x) \in S \Longleftrightarrow x \in L
$$

(со)Recognition

"You're discriminating against code I write!"

$\overrightarrow{C S}$ "QA engineer isn't paid enough" : $x \in L \Longrightarrow M(x) \in S$ and $x \notin L \Longrightarrow M(x) \notin S$ or Segmentation fault
$\overleftarrow{\text { CS }}$ "it's a feature not a bug" : $x \notin L \Longrightarrow M(x) \notin S$ and

$$
x \in L \Longrightarrow M(x) \in S \text { or Segmentation fault }
$$

$\overleftrightarrow{\mathbf{C S}}$ "I test in production" $: M(x) \in S \Longleftrightarrow x \in L$ if $M(x)$ runs

All of These Categories are Weird

Consider the empty set of strings \varnothing. What are arrows $L \rightarrow \varnothing$?

Consider the set of all strings Σ^{*}. What are arrows $L \rightarrow \Sigma^{*}$?
$L \longrightarrow$ (whatever you want)
$\bar{L} \longrightarrow$ Segmentation fault
CS, $\overleftarrow{\mathbf{C S}}, \overrightarrow{\mathbf{C S}}, \overleftarrow{\mathbf{C S}}$ all don't have initial and terminal objects.

Products

The (categorical) product of two sets (objects in Set) is something we all know:

$$
X \times Y=\{(x, y): \mid: x \in X ; y \in Y\}
$$

In general:

Products

So how about in CS?
What you probably think: for strings α, β, let $\alpha \oint \beta$ be some (fixed, computable) way of encoding the ordered pair (α, β), then for $L, S \subseteq \Sigma^{*}$ set

$$
L \times S:=\{\alpha \chi \beta: \mid: \alpha \in L ; \beta \in S\}
$$

This is great, but it's missing nuance.

Products

Theorem (you're kinda right)

Let $\varnothing \neq L, S \subsetneq \Sigma^{*}$. If $L \times S$ exists, then for $\alpha \in L$ and $\beta \in S$, there must be a unique $\alpha \ell \beta \in L \times S$.

Proof (sketch).

then $\alpha \chi \beta=M(\epsilon)$.

Products

How would we write $\operatorname{proj}_{L}: L \times S \rightarrow L$?
1 string projL(string alpha, string beta) \{ return alpha;
\}
Foolish! If $\alpha \in L$ and $\beta \notin S$, then $\alpha \gamma \beta \notin L \times S$, but $\operatorname{projL}(\alpha \gamma \beta)=\alpha \in L$, so this is not an arrow $L \times S \rightarrow L$.

If $\beta \notin S$, then any choice we make for $\operatorname{proj}_{L}(\alpha \gamma \beta)$ with $\alpha \in L$ ruins the necessary uniqueness of the tupling Turing machine. Guess CS is hopeless... (its variants too)

We Just Needed More

"[R]emember to look up at the stars and not down at your feet."
-Stephen Hawking

What starts with an ' h ' and ends in 'ope'? Homotope!

Say two Turing machines $M, N: L \rightarrow S$ are (homotopy) equivalent if

$$
M(x)=N(x) \forall x \in L \quad \text { (including segfaults) }
$$

CS is just slightly weak

We should really think of $\mathbf{C S}$ (and its variants) as a $(2,1)$-category!

Definition

A $(2,1)$-category \mathscr{C} consists of

- objects (e.g., X, Y, Z, \ldots)
- arrows between objects (e.g., $f: X \rightarrow Y$)
- equivalences between arrows (e.g., $h: f \simeq g: X \rightarrow Y$)
so that
- arrows can be composed (up to equivalence)
- there is a "do nothing arrow" (up to equivalence)

What's the Point?

"Arrow composition [et cetera] is defined up to equality in CS, so haven't we done nothing at all?"

Yes, we've done nothing!

The End

Weaker Limits

Definition (terminal object)

An object 1 of a category is terminal if there is a unique arrow

$$
X \xrightarrow{x}
$$

I mentioned CS does not have a terminal object (nor does its variants).

Definition (2-terminal object)

An object 1 of a $(2,1)$-category is terminal if there is a unique arrow

$$
X \text {----> } 1
$$

up to (unique) equivalence.
So, when CS is a (2,1)-category, does it have a terminal object?

Terminal Object

Set (as an ordinary category) has a terminal object: $\{*\}$
Vect $_{\mathbb{R}}$ also has a terminal object in the same way: $\{0\}$

As a (2,1)-category, does $\overleftrightarrow{\mathbf{C S}}$ have a terminal object? \varnothing !
Any arrow $L \rightarrow \varnothing$ must segfault in L, and hence are all equivalent to

```
void bar(void) {
    for (;;); // the compiler is REALLY bad
}
```

This also shows $\overleftarrow{\mathbf{C S}}$ has \varnothing as its terminal object.

What about $\overrightarrow{\mathbf{C S}}$ and CS? Maps $L \rightarrow \varnothing$ generally do not exist.

Terminal Objects in CS

The terminal object would have to be a singleton (by its uniqueness).
Let $\{T\}$ be our candidate terminal object for $\mathbf{C S}$ (and $\overrightarrow{\mathbf{C S}}$).
By post-composing with

```
string baz(string l) {
    return l==TOP ? l : BOT;
```

\}
we need only consider arrows $L \rightarrow\{\top\}$ sending:

Can you decide if CS has a terminal object? Can you recognise a terminal object for $\overrightarrow{\mathbf{C S}}$?

Terminal Objects in CS

The Halting Problem shows that CS does not have a terminal object.

However, the full $(2,1)$-subcategory of decidable languages in CS does!

Likewise, the full $(2,1)$-subcategory of recognisable languages in $\overrightarrow{\mathbf{C S}}$ has the same terminal object.

Products in CS

A product of objects in a (2,1)-category is a mouthful:

Theorem

Let $\varnothing \neq L \neq \Sigma^{*}$ be decidable, and $S \neq \Sigma^{*}$. Then, the following are equivalent:
(1) S is decidable
(i) $L \times S$ exists in CS
(1) $L \times S$ exists and is decidable in CS

Edge Cases

Theorem

Let $\varnothing \neq L \neq \Sigma^{*}$ be decidable, and $S \neq \Sigma^{*}$. Then, the following are equivalent:
(1) S is decidable
(1) $L \times S$ exists in CS
(1) $L \times S$ exists and is decidable in CS

The only product with Σ^{*} that exists is with Σ^{*}, or else the projection maps do not work.
If $S \neq \Sigma^{*}$, then $\varnothing \times S=\varnothing$ no matter what S was.

Proof Sketch

If L, S are decidable, and we know $\ell_{0} \in L$ while $\ell_{1} \notin L$, then the projections are given by:

1 string projL(string x, string y) \{ // TODO: projS

It's clear how to decide if $x \oint y \in L \times S$ as well.
If $L \times S$ is decidable, then we can decide S :
1 bool memberS(string y) \{ return memberL(projL(ELL_0, y));
3 \}

Conclusion

- the structure of CS is too weak for ordinary category theory
- it's no coincidence that the objects of CS are sets of strings
- you need fancy string manipulation (Turing machines) to study CS

The End

