Visualization Principles

Tamara Munzner
Department of Computer Science
University of British Columbia

VIZBI 2011: Workshop on Visualizing Biological Data
16 Mar 2011

http://www.cs.ubc.ca/~tmm/talks.html#vizbi11
Defining visualization

computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively
Defining visualization

Computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively.

- Human in the loop needs the details

Identical statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x mean</td>
<td>9.0</td>
</tr>
<tr>
<td>x variance</td>
<td>10.0</td>
</tr>
<tr>
<td>y mean</td>
<td>7.50</td>
</tr>
<tr>
<td>y variance</td>
<td>3.75</td>
</tr>
<tr>
<td>x/y correlation</td>
<td>0.816</td>
</tr>
</tbody>
</table>
Defining visualization

Computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively.

- Human in the loop needs the details
- External representation: perception vs cognition
Defining visualization

computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively

• human in the loop needs the details
• external representation: perception vs cognition
• intended task
Defining visualization

computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively

• human in the loop needs the details
• external representation: perception vs cognition
• intended task
• measureable definitions of effectiveness
Visualization design space

• huge space of design alternatives
 – tradeoffs abound

• many possibilities now known to be ineffective
 • avoid random walk through parameter space
 • avoid some of our past mistakes
 • extensive experimentation has already been done

• guidelines continue to evolve
 – we reflect on lessons learned in design studies
 – iterative refinement usually wise
Principles

• know your visual channel types and ranks
• categorical color constraints
• power of the plane
• danger of depth
• resolution beats immersion
• eyes beat memory
• validate against the right threat
Data types

- Tabular
 - Categorical
 - Ordered
 - Ordinal
 - Quantitative
- Relational
- Spatial
Data types

- tabular
 - categorical
 - fruit: apples, oranges
 - ordered
 - ordinal
 - quantitative

- relational

- spatial
Data types

- Tabular
 - Categorical
 - Fruit: apples, oranges
 - Ordered
 - Ordinal
 - Shirt sizes: small, medium, large
 - Quantitative
- Relational
- Spatial
Data types

- Tabular
 - Categorical
 - Fruit: apples, oranges
 - Ordered
 - Shirt sizes: small, medium, large
- Relational
 - Ordinal
- Spatial
 - Quantitative
 - Lengths: 17 inches, 23 inches
Data types

- tabular
 - categorical
 - fruit: apples, oranges
 - ordered
 - ordinal
 - shirt sizes: small, medium, large
 - quantitative
 - lengths: 17 inches, 23 inches
- relational
 - links between table columns
- spatial
Data types

- **tabular**
 - categorical
 - fruit: apples, oranges
 - ordered
 - ordinal
 - shirt sizes: small, medium, large
 - quantitative
 - lengths: 17 inches, 23 inches

- **relational**
 - links between table columns

- **spatial**
 - intrinsic position, not abstract
Visual encoding

- analyze
 showing abstract data dimensions
Visual encoding

- analyze as combination of marks and channels showing abstract data dimensions
Image theory

- marks: geometric primitives
 - points
 - lines
 - areas

- visual channels: control appearance of marks
 - position
 - horizontal
 - vertical
 - both
 - color
 - tilt
 - size
 - shape
Visual encoding

- analyze as combination of marks and channels showing abstract data dimensions
Visual encoding

- analyze as combination of marks and channels showing abstract data dimensions

1: vertical position

mark: line
Visual encoding

- analyze as combination of marks and channels showing abstract data dimensions

1: vertical position

2: vertical position, horizontal position

mark: line mark: point
Visual encoding

- analyze as combination of marks and channels showing abstract data dimensions

1: vertical position
2: vertical position, horizontal position
3: vertical position, horizontal position, color

mark: line mark: point mark: point
Visual encoding

- Analyze as combination of marks and channels showing abstract data dimensions

1: vertical position
2: vertical position, horizontal position
3: vertical position, horizontal position, color
4: vertical position, horizontal position, color, size

mark: line mark: point mark: point mark: point
Visual channel types and rankings

what/where

How much
Visual channel types and rankings

what/where

planar position
color hue
shape
stipple pattern

How much
Visual channel types and rankings

What/Where
- planar position
- color hue
- shape
- stipple pattern

How much
- position on common scale
- position on unaligned scale
- length (1D size)
- tilt, angle
- area (2D size)
- curvature
- volume (3D size)
- lightness (black/white)
- color saturation
- stipple density
Visual channel types and rankings

Categorical

What/where
- planar position
- color hue
- shape
- stipple pattern

How much
- position on common scale
- position on unaligned scale
- length (1D size)
- tilt, angle
- area (2D size)
- curvature
- volume (3D size)
- lightness (black/white)
- color saturation
- stipple density
Visual channel types and rankings

Categorical: what/where
- planar position
- color hue
- shape
- stipple pattern

Ordered: Ordinal/Quantitative
- How much
 - position on common scale
 - position on unaligned scale
 - length (1D size)
 - tilt, angle
 - area (2D size)
 - curvature
 - volume (3D size)
 - lightness, black/white
 - color saturation
 - stipple density
Visual channel types and rankings

Categorical
what/where

- planar position
- color hue
- shape
- stipple pattern

Ordered: Ordinal/Quantitative
how much

- position on common scale
- position on unaligned scale
- length (1D size)
- tilt, angle
- area (2D size)
- curvature
- volume (3D size)
- lightness (black/white)
- color saturation
- stipple density

Grouping

- containment (2D)
- connection (1D)
- similarity (other channels)
- proximity (position)
Visual channel types and rankings

Categorical
what/where

- planar position
- color hue
- shape
- stipple pattern

Relational, Same Category
Grouping

- Containment (2D)
- Connection (1D)
- Similarity (other channels)
- Proximity (position)

Ordered: Ordinal/Quantitative
How much

- position on common scale
- position on unaligned scale
- length (1D size)
- tilt, angle
- area (2D size)
- curvature
- volume (3D size)
- lightness (black/white)
- color saturation
- stipple density
Power of the plane: only position works for all!

Categorical

- What/where
 - Planar position
 - Color hue
 - Shape
 - Stipple pattern

Ordered: Ordinal/Quantitative

- How much
 - Position on common scale
 - Position on unaligned scale
 - Length (1D size)
 - Tilt, angle
 - Area (2D size)
 - Curvature
 - Volume (3D size)
 - Lightness (black/white)
 - Color saturation
 - Stipple density

Relational, Same Category

- Grouping
 - Containment (2D)
 - Connection (1D)
 - Similarity (other channels)

Proximity (position)
Ranking differs for all other channels

Categorical
- What/where
 - planar position
 - color hue
 - shape
 - stipple pattern

Ordered: Ordinal/Quantitative
- How much
 - position on common scale
 - position on unaligned scale
 - length (1D size)
 - tilt, angle
 - area (2D size)
 - curvature
 - volume (3D size)
 - lightness black/white
 - color saturation
 - stipple density

Relational, Same Category
- Grouping
 - Containment (2D)
 - Connection (1D)
 - Similarity (other channels)
 - Proximity (position)
Channel rankings

• effectiveness principle: encode most important attributes with highest ranked channels [Mackinlay 86]

• where do rankings come from?
 – accuracy, discriminability, separability, popout
Accuracy

Stevens’ Psychophysical Power Law

\[S = I^n \]

- Electric Current: \(n = 3.5 \)
- Color Saturation: \(n = 1.7 \)
- B/W Lightness: \(n = 1.2 \)
- Length: \(n = 1.0 \)
- Area: \(n = 0.7 \)
- Loudness: \(n = 0.67 \)
- Brightness: \(n = 0.5 \)
Accuracy

- position along common scale

- frame increases accuracy [Cleveland 84]
- Weber's Law: relative judgements
 - filled rectangles differ by 1:9
 - white rectangles differ by 1:2
Discriminability: How many usable steps?

• linewidth: only a few
Discriminability: Categorical color constraints

- noncontiguous small regions of color: only 6-12 bins

Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. Bioinformatics 2007
Separability vs. integrality
Separability vs. integrality

- **Position**
- **Hue (color)**

Fully separable

2 groups each
Separability vs. integrality

- **Position**
 - Hue (color)
 - Fully separable

- **Size**
 - Hue (color)
 - Some interference
 - Difficult to discriminate small items

- 2 groups each

(2 groups each)
Separability vs. integrality

- Position: fully separable
 - Hue (color)
 - Some interference
 - Difficult to discriminate small items
 - Integral percept: area (planar size)
 - 2 groups each

- Size: some/significant interference
 - Hue (color)
 - Size: width
 - Size: height
 - Integral percept: area
 - 2 groups each

- Size: 3 groups
Separability vs. integrality

- **Position**
 - hue (color)
 - fully separable
 - 2 groups each

- **Size**
 - hue (color)
 - some interference
 - difficult to discriminate small items
 - 2 groups each

- **Size: Width**
 - size: height
 - some/significant interference
 - integral percept: area (planar size)
 - 3 groups

- **Red, Green**
 - major interference
 - integral percept: color/hue
 - 4 groups
Separability vs. integrality

- **Position variety**
 - Hue (color)
 - Fully separable
 - Some interference
 - Difficult to discriminate small items
 - 2 groups each

- **Size variety**
 - Hue (color)
 - Some interference
 - Integral percept: area (planar size)
 - 3 groups

- **Size: Width**
 - Size: height
 - Some/significant interference
 - Integral percept: color/hue
 - 4 groups

- **Red green**
 - Major interference

Note: The diagram illustrates the concept of separability and integrality in visual perception, showing how different attributes (position, size, color) affect the ability to distinguish groups or items.
Separability vs. integrality

- Position and hue (color) are fully separable:
 - 2 groups each

- Size and hue (color) have some interference:
 - Some interference
 - 2 groups each

- Size: width and size: height have some/significant interference:
 - Some/significant interference
 - Integral percept: area (planar size)
 - 3 groups

- Red and green have major interference:
 - Major interference
 - Integral percept: color/hue
 - 4 groups
Popout: Most channels

• parallel processing on most channels
 – sufficiently different item noticed immediately, independent of distractor count

• some channels have no popout: serial search required

Healey. Perception in Visualization
http://www.csc.ncsu.edu/faculty/healey/PP/
Popout: Most channels

• parallel processing on most channels
 – sufficiently different item noticed immediately, independent of distractor count

• some channels have no popout: serial search required

Healey. Perception in Visualization
http://www.csc.ncsu.edu/faculty/healey/PP/
Popout limits

• only one channel at a time
 – combination searches are serial
 • most channel pairs
 • all channel triplets, etc

• within channel, speed depends on which channel and how different item is from surroundings
 – ‘sufficiently different’: context dependent

Healey. Perception in Visualization
http://www.csc.ncsu.edu/faculty/healey/PP/
Encoding example: Heatmaps vs. curvemaps

- color traditional, but spatial position outranks it

heatmap

curvemap

courtesy of M. Styczynski from JavaTreeview jtreeview.sourceforge.net/
Curvemap

- shape perception easier for filled framed line charts than colored boxes

Curvemap

• shape perception easier for filled framed line charts than colored boxes

Curvemap

- shape perception easier for filled framed line charts than colored boxes

Dangers of depth

- rankings for **planar** spatial position, not depth!
- we don’t really live in 3D: we **see** in 2.05D
 - up/down and sideways: image plane
 - acquire more info quickly from eye movements
 - away: depth into scene
 - only acquire more info from head/body motion

- further reading

Visual Thinking for Design (Chap 5). Colin Ware. 2008
Dangers of depth: difficulties of 3D

- occlusion
- interaction complexity

Dangers of depth: difficulties of 3D

• perspective distortion
 – interferes with all size channel encodings
 – power of the plane is lost!

Visualizing the Results of Multimedia Web Search Engines.
Mukherjea, Hirata, and Hara. InfoVis 96
Dangers of depth: difficulties of 3D

• text legibility
 – far worse when tilted from image plane

• further reading

Exploring and Reducing the Effects of Orientation on Text Readability in Volumetric Displays.
Grossman et al. CHI 2007

Visualizing the World-Wide Web with the Navigational View Builder.
Dangers of depth example

• extruded curves: detailed comparisons impossible

Cluster and Calendar based Visualization of Time Series Data.
van Wijk and van Selow, Proc InfoVis 99.
Transformation to suitable abstraction

• derived data: clusters
• multiple views: calendar, superimposed 2D curves

Cluster and Calendar based Visualization of Time Series Data.
van Wijk and van Selow, Proc InfoVis 99.
Dangers of depth: must justify

• 3D legitimate for true 3D spatial data
• 3D needs very careful justification for abstract data
 – enthusiasm in 1990s, but now skepticism
 – be especially careful with 3D for point clouds or networks

WEBPATH—a three dimensional Web history. Frecon and Smith. InfoVis 1999
Resolution beats immersion

- immersion typically not helpful for abstract data
 - do not need sense of presence or stereoscopic 3D
- resolution much more important
 - pixels are the scarcest resource
 - desktop also better for workflow integration
- virtual reality for abstract data very difficult to justify

Development of an information visualization tool using virtual reality.
Kirner and Martins. Symp Applied Computing 2000
Eyes beat memory

- principle: external cognition vs. internal memory
 - easy to compare by moving eyes between side-by-side views
 - harder to compare visible item to memory of what you saw

- implications for animation
 - great for choreographed storytelling
 - great for transitions between two states
 - poor for many states with changes everywhere
 - consider small multiples instead

literal abstract

animation small multiples

show time with time show time with space
Small multiples example: Cerebral

- small multiples: one graph instance per experimental condition
 - same spatial layout
 - color differently, by condition

Why not animation?

• global comparison difficult
Why not animation?

• further reading

Animation: can it facilitate? Tversky et al.
Beyond encoding and interaction

• three more levels of design questions
 – different threats to validity at each level
• validate against the right threat

problem: you misunderstood their needs

abstraction: you’re showing them the wrong thing

encoding: the way you show it doesn’t work

algorithm: your code is too slow

A Nested Model for Visualization Design and Validation. Munzner. IEEE InfoVis 2009.
Characterizing problems of real-world users

• identify a problem amenable to vis
 – provide novel capabilities
 – speed up existing workflow

• validation
 – immediate: interview and observe target users
 – downstream: notice adoption rates
Abstracting into operations on data types

- abstract from domain-specific to generic
- operations
 - sorting, filtering, browsing, comparing, finding trend/outlier,
 characterizing distributions, finding correlation...
- data types
 - tables of numbers, relational networks, spatial
 - transform into useful configuration: derived data
- validation
 - deploy in the field and observe usage
Designing visual encoding, interaction techniques

• visual encoding: drawings they are shown
• interaction: how they manipulate drawings
• validation
 – immediate: careful justification wrt known principles
 – downstream: qualitative or quantitative analysis of results
 – downstream: lab study measuring time/error on given task

• focus of this talk
Creating algorithms to execute techniques

- automatically carry out specification
- validation
 - immediate: complexity analysis
 - downstream: benchmarks for system time, memory
Danger of validation mismatch

- cannot show encoding good with system timings
- cannot show abstraction good with lab study

Problem validate: observe target users

Encoding validate: justify design wrt alternatives

Algorithm validate: measure system time

Encoding validate: lab study, qualitative analysis

Abstraction validate: observe real usage in field
Principles recap

• know your visual channel types and ranks
• categorical color constraints
• power of the plane
• danger of depth
• resolution beats immersion
• eyes beat memory

• validate against the right threat
More information

• vis intro book chapter
 – principles in more depth
 – also, techniques!

 http://www.cs.ubc.ca/~tmm/papers.html#akpchapter

• papers, videos, software, talks, courses
 http://www.cs.ubc.ca/~tmm

• this talk
 http://www.cs.ubc.ca/~tmm/talks.html#vizbi11