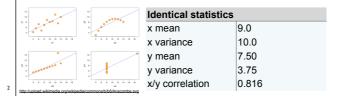
Visualization Principles

Tamara Munzner

Department of Computer Science University of British Columbia

VIZBI 2011: Workshop on Visualizing Biological Data 16 Mar 2011

http://www.cs.ubc.ca/~tmm/talks.html#vizbill


Defining visualization

computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively

Defining visualization

computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively

human in the loop needs the details

Defining visualization

computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively

- human in the loop needs the details
- external representation: perception vs cognition

Defining visualization

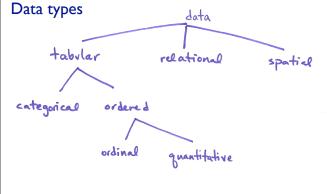
computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively

- human in the loop needs the details
- external representation: perception vs cognition
- intended task

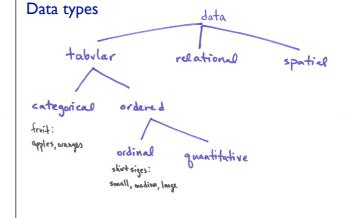
Defining visualization

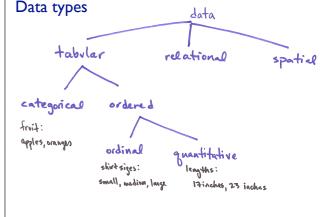
computer-based visualization systems provide visual representations of datasets intended to help people carry out some tast more effectively

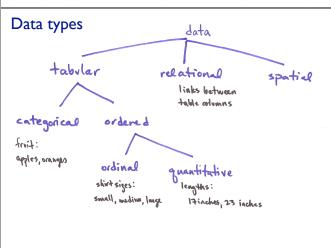
- human in the loop needs the details
- external representation: perception vs cognition
- intended task
- · measureable definitions of effectiveness

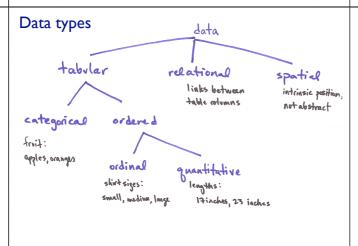

Visualization design space

- huge space of design alternatives


 tradeoffs abound
- many possibilities now known to be ineffective
 - avoid random walk through parameter space
 - avoid some of our past mistakes
 - extensive experimentation has already been done
- guidelines continue to evolve
- -we reflect on lessons learned in design studies
- -iterative refinement usually wise


Principles


- know your visual channel types and ranks
- categorical color constraints
- power of the plane
- danger of depth
- resolution beats immersion
- eyes beat memory
- validate against the right threat

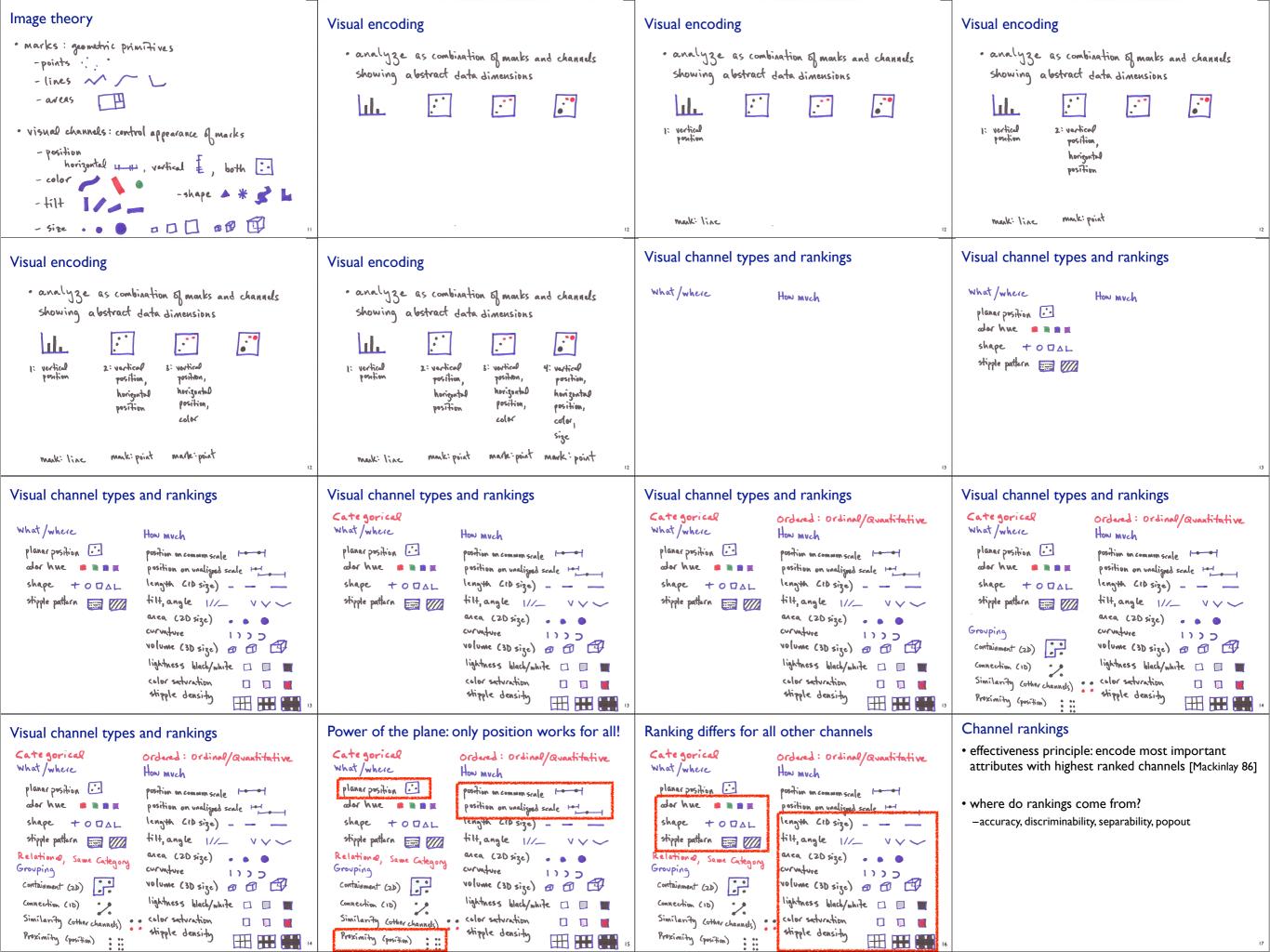


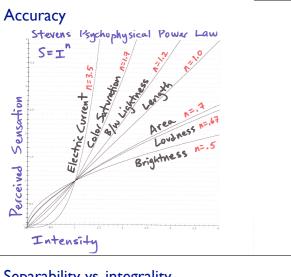
Visual encoding

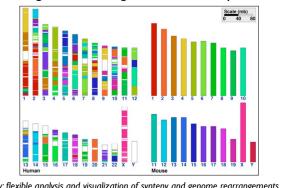
· analyze showing abstract data dimensions

ىلد

Visual encoding


· analyze as combination of marks and channels showing abstract data dimensions


علىا


Accuracy · position along common scale - Frame increases accuracy [cleveland 84] - Weber's Law: relative judgements filled rectangles differ by 1:9 white rectangles differ by 1:2 Separability vs. integrality

Discriminability: Categorical color constraints

• noncontiguous small regions of color: only 6-12 bins

 ${\it Cinteny: flexible\ analysis\ and\ visualization\ of\ synteny\ and\ genome\ rearrangements\ in}$ multiple organisms. Sinha and Meller. Bioinformatics 2007

Separability vs. integrality

size: width

size: height

some/significant

interference

integral

percept:

(planar size)

3 groups

fully separable

2 groups each

Separability vs. integrality

fully separable

2 groups each

interference

difficult to

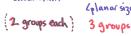
discriminat

small items

2 groups each

position

integral percept: area (planar size)

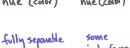

some/significant

0

•

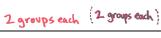
0 0

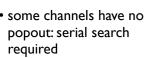
2 groups each


size: width

size: height

Separability vs. integrality





independent of distractor

Separability vs. integrality

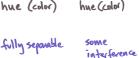
major interference

integral

percept:

color/hne

4 groups



2 groups ead

Popout limits

difficult to

discriminate

small Hems

2 groups each ;


size

size: width

size: height

000

0 0

red

green

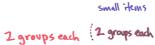
000

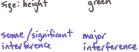
Separability vs. integrality

..

hue (color)

size





interference

3 groups

000

0 0

red

green

° °

Separability vs. integrality

size

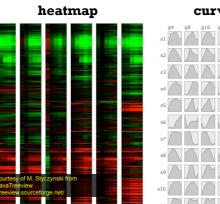
• parallel processing on most channels

Popout: Most channels

- -sufficiently different item noticed immediately, independent of distractor count
- · some channels have no popout: serial search required

Healey. Perception in Visualization

Curvemap

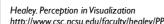


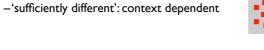
Encoding example: Heatmaps vs. curvemaps

discriminate

• color traditional, but spatial position outranks it curvemap

· shape perception easier for


http://www.csc.ncsu.edu/faculty/healey/PP/


filled framed line charts than colored boxes

Pathline: A Tool for Comparative Functional Genomics.

Meyer, Wong, Styczynski, Munzner, Pfister. EuroVis 2010.

how different item is from surroundings

• within channel, speed depends on which channel and

• only one channel at a time

most channel pairs

• all channel triplets, etc

-combination searches are serial

http://www.csc.ncsu.edu/faculty/healey/PP/

Curvemap shape perception easier for filled framed line charts than colored boxes

Pathline: A Tool for Comparative Functional Genomics. Meyer, Wong, Styczynski, Munzner, Pfister. EuroVis 2010.

Dangers of depth: difficulties of 3D

- perspective distortion
- -interferes with all size channel encodings
- -power of the plane is lost!

Visualizing the Results of Multimedia Web Search Engines. Mukherjea, Hirata, and Hara. InfoVis 96

Pathline: A Tool for Comparative Functional Genomics. Meyer, Wong, Styczynski, Munzner, Pfister. EuroVis 2010.

Curvemap

colored boxes

• shape perception easier for

filled framed line charts than

Dangers of depth: difficulties of 3D

- text legibility

 far worse when tilted from
- image plane
- further reading

Exploring and Reducing the Effects of Orientation on Text Readability in Volumetric Displays.

Grossman et al. CHI 2007

Visualizing the World-Wide Web with the Navigational View Builder. Mukherjea and Foley. Computer Networks and ISDN Systems, 1995.

Dangers of depth example

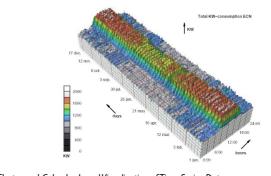
further reading

Dangers of depth

-away: depth into scene

• extruded curves: detailed comparisons impossible

· rankings for planar spatial position, not depth!


we don't really live in 3D: we see in 2.05D

· acquire more info quickly from eye movements

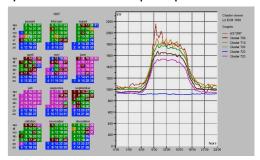
· only acquire more info from head/body motion

Visual Thinking for Design (Chap 5). Colin Ware. 2008

-up/down and sideways: image plane

Cluster and Calendar based Visualization of Time Series Data.
van Wijk and van Selow, Proc InfoVis 99.

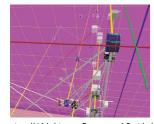
Distortion Viewing Techniques for 3D Data. Carpendale et al. InfoVis 1996.


Transformation to suitable abstraction

Dangers of depth: difficulties of 3D

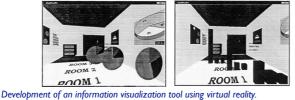
occlusion

interaction complexity


- derived data: clusters
- multiple views: calendar, superimposed 2D curves

Cluster and Calendar based Visualization of Time Series Data.
van Wijk and van Selow, Proc InfoVis 99.

Dangers of depth: must justify


- 3D legitimate for true 3D spatial data
- 3D needs very careful justification for abstract data
- enthusiasm in 1990s, but now skepticism
- be especially careful with 3D for point clouds or networks

WEBPATH-a three dimensional Web history. Frecon and Smith. InfoVis 1999

Resolution beats immersion

- immersion typically not helpful for abstract data
- -do not need sense of presence or stereoscopic 3D
- resolution much more important
- -pixels are the scarcest resource
- -desktop also better for workflow integration
- virtual reality for abstract data very difficult to justify

Kirner and Martins. Symp Applied Computing 2000

Eyes beat memory

- principle: external cognition vs. internal memory
- easy to compare by moving eyes between side-by-side views
- -harder to compare visible item to memory of what you saw
- implications for animation
- -great for choreographed storytelling
- -great for transitions between two states
- -poor for many states with changes everywhere
- · consider small multiples instead

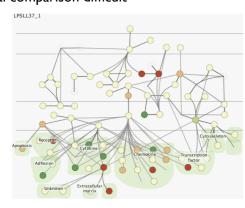
.....

abstract

animation small multiples show time with time show time with space

•

Small multiples example: Cerebral


- small multiples: one graph instance per experimental condition
- same spatial layout- color differently, by condition

Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, Kincaid. IEEE InfoVis 2008.

Why not animation?

global comparison difficult

Why not animation?

further reading

Animation: can it facilitate? Tversky et al. Intl Journ Human-Computer Studies, 57(4):247-262, 2002.

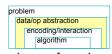
Beyond encoding and interaction

- three more levels of design questions
- -different threats to validity at each level
- · validate against the right threat

abstraction: you're showing them the wrong thing
encoding: the way you show it doesn't work

algorithm: your code is too slow

A Nested Model for Visualization Design and Validation.
Munzner. IEEE InfoVis 2009.


Characterizing problems of real-world users

problem

data/op abstraction
encoding/interaction
algorithm

- identify a problem amenable to vis
- -provide novel capabilities
- -speed up existing workflow
- validation
 - -immediate: interview and observe target users
- -downstream: notice adoption rates

Abstracting into operations on data types

- abstract from domain-specific to generic
- operations
- sorting, filtering, browsing, comparing, finding trend/outlier, characterizing distributions, finding correlation...
- tables of numbers, relational networks, spatial
- transform into useful configuration: derived data

• know your visual channel types and ranks

validation

Principles recap

• power of the plane

eyes beat memory

danger of depth

-deploy in the field and observe usage

categorical color constraints

· resolution beats immersion

validate against the right threat

Designing visual encoding, interaction techniques Creating algorithms to execute techniques

- visual encoding: drawings they are shown
- interaction: how they manipulate drawings
- validation
- -immediate: careful justification wrt known principles
- -downstream: qualitative or quantitative analysis of results
- -downstream: lab study measuring time/error on given task
- focus of this talk

More information

- · vis intro book chapter
 - -principles in more depth
 - -also, techniques!

http://www.cs.ubc.ca/~tmm/papers.html#akpchapter

- papers, videos, software, talks, courses
- this talk http://www.cs.ubc.ca/~tmm/talks.html#vizbill

problem data/op abstraction

- encoding/interaction algorithm
- · automatically carry out specification
- validation
- -immediate: complexity analysis
- -downstream: benchmarks for system time, memory

Danger of validation mismatch

- cannot show encoding good with system timings
- cannot show abstraction good with lab study

problem validate: observe target users encoding validate: justify design wrt alternatives algorithm validate: measure system time encoding validate: lab study, qualitative analysis abstraction validate: observe real usage in field