Scalable Visualization with Accordion Drawing

Tamara Munzner

University of Sitish Columbia
Department of Computer Science
joint work with James Slack, Kistian Hildebrand, Katherine St. John $\sum_{\text {Imager }}$

Problem: Comparing Evolutionary Trees

TreeJuxtaposer
side by side comparison of evolutionary trees video, software downloadable from http://loduvai.sf.nettij

ITreeJuxtaposer: Scalable Tree Comparison using Focus+Context with
Guaranteed Visibility T Tamara Munzer. Francois Guimbretièe, Serdar LiZhang, Yunhong Zhou. Proc SIGGRAPH 2003]

Common Dataset Size Today

M Meegaskumbura et al., Science 298:379 (2002)

Future Goal: 10M Node Tree of Life

Accordion Drawing
TJ Contributions
first interactive tree comparison system - automatic structural difference computation
scalabe to arge daasels
250,000 to 500,000 total nodes: original
up to $4,000,000$ nodes: later, with PRISAD

- all realtime rendering sublinear
- items to render >> number of available pixels
scalable to large displays (4000×2000)
- introduced accordion drawing

What's Hard?

- Tree Diff

Find best corresponding nodes between trees
Find best corresponding nodes between trees
Algorithm complexity - preprocessing: \mathbf{O} (n $\left.\log ^{2} \mathrm{n}\right)$. Per-frame: constant

- Guaranteed Visibility
- Rendering
- For each frame, partition into visible regions, draw something useful Provide guaranteed visibility of landmarks
Algoritimm compexity depends
- Navigation
- Have: (Objects drawn each frame) << (Total dataset objects) Want: (Updates for navigation) << (Totala dataset objectis) Algorithm complexity logarithmic in dataset size

Tree Dif

$L(\mathrm{~m})=\{E, F\}$

$$
\mathbf{n} L
$$

$$
\begin{aligned}
& \mathbf{n})=\{D F F\} \\
& E
\end{aligned}
$$

$S(\mathrm{~m}, \mathrm{n})=\frac{|L(\mathrm{~m}) \cap L(\mathrm{n})|}{|L(\mathrm{~m}) \cup L(\mathrm{n})|}=\frac{|\{\mathrm{E}, \mathrm{F}\}|}{\mid\{\mathrm{D}, \mathrm{E}, \mathrm{F}\}}=\frac{2}{3}$

Best Corresponding Node

- $\mathrm{BCN}(\mathrm{m})=\operatorname{argmax}_{v \in \mathrm{~T}_{2}}(S(\mathrm{~m}, v))$
- computable in $\mathrm{O}\left(\mathrm{n} \log ^{2} \mathrm{n}\right)$
- linked highlighting

Guaranteed Visibility Challenges

hard with larger datasets
reasons a mark could be invisible
outside the window

- AD solution: constrained navigation

Guaranteed Visibility Challenges

- hard with larger datasets
- reasons a mark could be invisible
outside the window
- AD solution: constrained navigation
underneath other marks
- AD solution: avoid 3D

Guaranteed Visibility Rationale

$$
\begin{aligned}
& \begin{array}{l}
\text { Tell missed extaustive exploration to fasce conclusions } \\
\text { hard to determine completion }
\end{array} \\
& \therefore \text { - hard to determine comp } \\
& \text { - compelling reason for Focus }+ \text { Context } \\
& \begin{array}{l}
\text { controversy: does distortion help or hurt? } \\
\text { strong rationale for comparison }
\end{array}
\end{aligned}
$$

infrastructure needed for efficient computation

Successive Navigations Preserve Visual History

${ }_{25}$

Implementing Stretch and Squish Navigation

* Simple to use
- Underlying infrastructure is complex to implemen
- Standard graphics pipeline has a single, monolithic transformation - Fast 4×4 matrix multiplication

- Stretch and squish cannot be implemented using this pipeline

Guaranteed Visibility Challenges

- hard with larger datasets
reasons a mark could be invisible
outside the window
. AD solution: cons
- AD solution: constrained navigation
underneath other marks
- AD solution: avoid 3D
- smaller than a pixel

AD solution: smart culling

Rending Complexity

- Reduce drawing complexity with sneaky culling
- For each frame: draw representative visible subset, not entire dataset
- (Total number of drawn objects per frame) << (Total (Intal number of drawn objects per frame) << (Total dataset items)
. Itaset with 600,000 leaves, draw only 1000 leaves - In sequence datasets, aggregate dense regions in software

${ }^{22}$
, Naive culling may not draw all marked items

Guaranteed visibility of marks

Guaranteed visibility
of marks

Stretch and Squish Navigation
PRISAD Architecture

world-space discretization
 - preprocessing

- initializing data structures
- placing geometr

User selects any region to grow or shrink

- Everything else shrinks or grows, accordingly
- Goal: handle millions of items, landmarks always stay visible

Growing a region

Navigation Algorithm Complexity

- Logarithmic complexity: $|\mathrm{Q}| \approx|\mathrm{K}| \log |\mathbb{N}| \ll|\mathbf{N}|$
- Q: Lines needing ratio updates

-
-
K: Lines to
$\mathrm{N}: \mathrm{All}$ lines

Many positions change, but few ratios require updates

- Moving 2 grid lines only requires changing ratios for 8 spit lines
- Subtrees not affected will conserve their internal ratios

$$
\Delta \stackrel{\square}{\square \Delta \Delta_{\Delta} \square_{\Delta} \Delta}
$$

Speed: under 1 millisecond for $|\mathbb{N}|=2,000,000$ lines
screen-space rendering frame updating analyzing navigation state Arawing geometry
 ${ }_{27}$

No guaranteed visibility

Lots More Information

- download software: http://lolduvai.s.f.net
many papers, talks, videos: hthp://hwww.cs. ubc. ca/^tmm Jampos Slack and Tamara Munzner. Proc. Visualization 2006. published as Transactions on
S Sisuarization and Computer Graphics $12(5)$, September 2006 .
Partitioned Rendering Infrastructure for Scalable Accordion Drawing
(Extended Version) James slack Munzner. Intirorimation Vames Sisualizati, Kisistian His) Hilidebrand, and
SequenceJuxtaposer:. Fluid Navigation For Large-Scale Sequence
Comparison In Context. James Slack, Kistian Fildebrand, Tamara Comparison In Context. James Slacc, KKistian nilldeberand,
Munzer, and Katherine St. John. German Conference on Munzner, and Katherine St Joh
Bioinformatics 2004, pp 37-42
- TreeJuxtaposer: Sacalable Tree Comparison using Focus+Context with

