## Visualization Analysis & Design

### Tamara Munzner

### Department of Computer Science University of British Columbia

UBC Alumni/Industry Lecture Feb 27 2020,Vancouver BC

http://www.cs.ubc.ca/~tmm/talks.html#vad20alum





# CAIDA



Data Science Institute



### Visualization: definition & motivation

Computer-based visualization systems provide visual representations of datasets designed to help people arry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- human in the loop needs the details & no trusted automatic solution exists
  - -doesn't know exactly what questions to ask in advance
  - -exploratory data analysis
    - **speed up** through human-in-the-loop visual data analysis
  - -present known results to others
  - -stepping stone towards automation
    - -before model creation to provide understanding
    - -during algorithm creation to refine, debug, set parameters
    - -before or during deployment to build trust and monitor

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum



more at: Visualization Analysis and Design. Munzner. CRC Press, 2014.

## Why analyze?

- imposes a structure on huge design space
  - -scaffold to help you think systematically about choices
  - -analyzing existing as stepping stone to designing new

### SpaceTree



[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson.



### TreeJuxtaposer



[Tree]uxtaposer: Scalable Tree Comparison Using Focus+Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453-462, 2003.]

### Analysis framework: Four levels, three questions

- domain situation
  - -who are the target users?
- abstraction
  - -translate from specifics of domain to vocabulary of vis

[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).

- what is shown? data abstraction
  - often don't just draw what you're given: transform to new form
- why is the user looking at it? task abstraction
- idiom
- **how** is it shown?
  - visual encoding idiom: how to draw
  - interaction idiom: how to manipulate
- algorithm
  - -efficient computation

### www.cs.ubc.ca/~tmm/talks.html#vad20alum

[A Multi-Level Typology of Abstract Visualization Tasks Brehmer and Munzner. IEEETVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013).]





### Why is validation difficult?

different ways to get it wrong at each level

Domain situation You misunderstood their needs

**Data/task abstraction**You're showing them the wrong thing

Wisual encoding/interaction idiom The way you show it doesn't work

Algorithm Your code is too slow



### Why is validation difficult?

solution: use methods from different fields at each level

| anthropology/                                       | Domain situation<br>Observe target users using existing tools                                                                                                                                    |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| etnnograpny                                         | Data/task abstraction                                                                                                                                                                            |
| design                                              | Visual encoding/interaction idiom<br>Justify design with respect to alternatives                                                                                                                 |
| computer                                            | Measure system time/memory                                                                                                                                                                       |
| science                                             | Analyze computational complexity                                                                                                                                                                 |
| science<br>cognitive                                | Analyze computational complexity<br>Analyze results qualitatively                                                                                                                                |
| science<br>cognitive<br>psychology                  | Analyze computational complexity<br>Analyze results qualitatively<br>Measure human time with lab experiment ( <i>lab study</i> )                                                                 |
| science<br>cognitive<br>psychology<br>anthropology/ | Analyze computational complexity<br>Analyze results qualitatively<br>Measure human time with lab experiment ( <i>lab study</i> )<br>Observe target users after deployment ( <i>field study</i> ) |

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum





### technique-driven work



|                                                                                                                                                                    |                                                            |                                  | What?                                  |                                     |                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------|----------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                    | D                                                          | atasets                          |                                        |                                     | Attrib                                                                                                   |
| <ul> <li>→ Data Types</li> <li>→ Items →</li> <li>→ Data and Dat</li> </ul>                                                                                        | Attributes                                                 | → Links                          | → Positions                            | → Grids                             | <ul> <li>→ Attribute Ty</li> <li>→ Categoria</li> <li>+ ●</li> <li>→ Ordered</li> </ul>                  |
| Items<br>Attributes                                                                                                                                                | Trees<br>Items (nodes)<br>Links<br>Attributes              | Grids<br>Positions<br>Attributes | Items<br>Positions                     | Sets, Lists<br>Items                | <ul> <li>→ Ordinal</li> <li>★ ★</li> <li>A Quantita</li> <li>→ L</li> </ul>                              |
| → Tables   Attribute   Attribute   Cell con   → Multidimer   Key 2   Attribute   Attribute   Attribute   Attribute   Attribute   Attribute   Attribute   Attribute | S<br>⇒ N<br>es (columns)<br>taining value<br>nsional Table | Networks                         | → Fields (<br>G<br>k<br>Node<br>(item) | Continuous)<br>arid of positions    | <ul> <li>→ Ordering Di</li> <li>→ Sequentia</li> <li>→ Diverging</li> <li>→ Cyclic</li> <li>↓</li> </ul> |
| → Geometry                                                                                                                                                         | (Spatial)<br>Position                                      |                                  |                                        | <ul> <li>→ Da</li> <li>→</li> </ul> | static                                                                                                   |

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

#### butes

ypes

ical

![](_page_6_Picture_6.jpeg)

![](_page_6_Picture_9.jpeg)

ative

—— I I-

#### irection

ial

![](_page_6_Picture_14.jpeg)

![](_page_6_Picture_16.jpeg)

→ Dynamic

•••••••••

## Types: Datasets and data

#### **Dataset Types** $\rightarrow$

 $\rightarrow$  Tables

 $\rightarrow$ 

![](_page_7_Figure_3.jpeg)

![](_page_7_Figure_4.jpeg)

![](_page_8_Figure_0.jpeg)

![](_page_8_Picture_2.jpeg)

![](_page_8_Picture_3.jpeg)

## Actions: Analyze, Query

Analyze

- analyze
  - consume
    - discover vs present
      - -aka explore vs explain
    - enjoy
      - aka casual, social
  - -produce
    - annotate, record, derive
- query
  - -how much data matters?
    - one, some, all
- independent choices
  - analyze, query, (search)

![](_page_9_Figure_15.jpeg)

### **Derive: Crucial Design Choice**

- don't just draw what you're given!
  - -decide what the right thing to show is
  - -create it with a series of transformations from the original dataset -draw that
- one of the four major strategies for handling complexity

![](_page_10_Figure_5.jpeg)

![](_page_10_Figure_6.jpeg)

trade balance = exports – imports

**Derived** Data

### **Original Data**

### Analysis example: Derive one attribute

- Strahler number
  - centrality metric for trees/networks
  - derived quantitative attribute
  - draw top 5K of 500K for good skeleton

[Using Strahler numbers for real time visual exploration of huge graphs. Auber. Proc. Intl. Conf. Computer Vision and Graphics, pp. 56–69, 2002.]

![](_page_11_Figure_6.jpeg)

![](_page_11_Figure_8.jpeg)

Targets

 $\overline{\phantom{a}}$ 

→ All Data

![](_page_12_Figure_3.jpeg)

→ Attributes

![](_page_12_Picture_5.jpeg)

![](_page_12_Picture_7.jpeg)

![](_page_12_Picture_8.jpeg)

#### How?

| E                                                | ncode      |                                                                                                     | Manipulate                                      |
|--------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|
| <ul> <li>→ Arrange</li> <li>→ Express</li> </ul> | → Separate | <ul> <li>Map<br/>from categorical and ordered<br/>attributes</li> </ul>                             | → Change         ···· ②         ···         ··· |
| → Order                                          | -→ Align   | → Color<br>→ Hue → Saturation → Luminance                                                           | <ul><li>→ Select</li></ul>                      |
| → Use                                            |            | <ul> <li>→ Size, Angle, Curvature,</li> <li>■ ■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □</li></ul>       | → Navigate                                      |
| What                                             |            | <ul> <li>→ Shape</li> <li>+ ● ■ ▲</li> <li>→ Motion</li> <li>Direction, Rate, Frequency,</li> </ul> | <u> </u>                                        |
| Why?<br>How?                                     |            |                                                                                                     |                                                 |

www.cs.ubc.ca/~tmm/talks.html#vad20alum

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

→ Aggregate

| <b></b>   |  |
|-----------|--|
|           |  |
| <b></b> > |  |

![](_page_13_Figure_7.jpeg)

### How to encode: Arrange space, map channels

Encode

![](_page_14_Figure_2.jpeg)

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

15

## **Definitions: Marks and channels**

![](_page_15_Figure_1.jpeg)

## Encoding visually with marks and channels

### • analyze idiom structure

-as combination of marks and channels

![](_page_16_Figure_3.jpeg)

mark: line

mark: point

mark: point

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

### 4: vertical position horizontal position color hue size (area)

mark: point

## Channels

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

## Channels: Matching Types

![](_page_18_Figure_1.jpeg)

## -match channel and data characteristics

## Channels: Rankings

![](_page_19_Figure_1.jpeg)

www.cs.ubc.ca/~tmm/talks.html#vad20alum

![](_page_19_Figure_3.jpeg)

![](_page_19_Figure_4.jpeg)

## -match channel and data characteristics

- -channels differ in accuracy of perception
- -match available levels in channel w/ data

#### How?

![](_page_20_Figure_1.jpeg)

www.cs.ubc.ca/~tmm/talks.html#vad20alum

![](_page_20_Figure_3.jpeg)

![](_page_20_Figure_4.jpeg)

→ Partition

→ Aggregate

| <b></b>   |  |
|-----------|--|
|           |  |
| <b></b> > |  |

![](_page_20_Figure_7.jpeg)

### Categorical vs ordered color

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

Annual sales by state

![](_page_21_Figure_4.jpeg)

Stone.Tableau Customer Conference 2014.]

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

## [Seriously Colorful: Advanced Color Principles & Practices.

### Decomposing color

- first rule of color: do not talk about color! -color is confusing if treated as monolithic
- decompose into three channels
  - ordered can show magnitude
    - luminance: how bright
    - saturation: how colorful
  - categorical can show identity
    - hue: what color
  - caveat: not well supported by current tools
- channels have different properties
  - -what they convey directly to perceptual system
  - -how much they can convey: how many discriminable bins can we use?

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

| Luminance  |  |
|------------|--|
| Saturation |  |
| Hue        |  |

![](_page_22_Picture_14.jpeg)

## Categorical color: limited number of discriminable bins

- human perception built on relative comparisons
  - -great if color contiguous
  - surprisingly bad for absolute comparisons
- noncontiguous small regions of color
  - -fewer bins than you want
  - –rule of thumb: 6-12 bins, including background and highlights
- alternatives? other talks!

![](_page_23_Figure_8.jpeg)

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

![](_page_23_Figure_11.jpeg)

## Ordered color: Rainbow is poor default

- problems
  - -perceptually unordered
  - -perceptually nonlinear
- benefits
  - -small-scale structure: see & name
- alternatives
  - -large-scale structure: fewer hues
  - -known structure: segmented
  - -have it both ways, small+large:
    - -multiple hues
    - -monotonically increasing luminance

![](_page_24_Figure_12.jpeg)

![](_page_24_Figure_13.jpeg)

![](_page_24_Figure_14.jpeg)

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

## Viridis / Magma

 colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

### https://cran.r-project.org/web/packages/ viridis/vignettes/intro-to-viridis.html

![](_page_25_Figure_3.jpeg)

#### How?

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_3.jpeg)

![](_page_27_Figure_4.jpeg)

![](_page_27_Figure_5.jpeg)

- change view over time
  facet across multiple views
- reduce items/attributes within single view
- derive new data to show within view

![](_page_28_Figure_1.jpeg)

www.cs.ubc.ca/~tmm/talks.html#vad20alum

![](_page_28_Picture_3.jpeg)

![](_page_28_Figure_4.jpeg)

![](_page_28_Figure_5.jpeg)

## change over time most obvious & flexible of the 4 strategies

![](_page_29_Figure_1.jpeg)

www.cs.ubc.ca/~tmr//talks.html#vad20a.um

![](_page_29_Picture_3.jpeg)

![](_page_29_Figure_4.jpeg)

![](_page_29_Figure_5.jpeg)

### facet data across multiple views

## Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
  - -powerful and pervasive interaction idiom
- encoding: different
- data: all shared

![](_page_30_Picture_5.jpeg)

[Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237–246. IOS Press, 1995.]

### www.cs.ubc.ca/~tmm/talks.html#vad20alum

### System: **EDV**

## Idiom: **bird's-eye maps**

- encoding: same
- data: subset shared
- navigation: shared -bidirectional linking
- differences
  - -viewpoint
  - -(size)
- overview-detail

![](_page_31_Figure_8.jpeg)

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1-31.]

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

## System: Google Maps

## Idiom: Small multiples

- encoding: same
- data: none shared
  - -nodes colored differently for each time/condition case
  - -(same network layout)
- navigation: shared

![](_page_32_Figure_6.jpeg)

[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14:6 (2008), 1253–1260.]

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

### System: Cerebral

## Coordinate views: Design choice interaction

![](_page_33_Figure_1.jpeg)

- why juxtapose views?
  - -benefits: eyes vs memory
    - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view

-costs: display area, 2 views side by side each have only half the area of one view www.cs.ubc.ca/~tmm/talks.html#vad20alum

## Idiom: Animation (change over time)

- weaknesses
  - -widespread changes-disparate frames
- strengths
  - -choreographed storytelling
  - localized differences between contiguous frames
  - animated transitions between states

![](_page_34_Figure_7.jpeg)

![](_page_35_Figure_1.jpeg)

www.cs.ubc.ca/~tmm/talks.html#vad20a

![](_page_35_Picture_3.jpeg)

![](_page_35_Figure_4.jpeg)

![](_page_35_Figure_5.jpeg)

### reduce what is shown within single view

## **Reduce** items and attributes

- reduce/increase: inverses
- filter
  - -pro: straightforward and intuitive
  - to understand and compute -con: out of sight, out of mind
- aggregation
  - -pro: inform about whole set
  - -con: difficult to avoid losing signal
- not mutually exclusive -combine filter, aggregate
  - –combine reduce, facet, change, derive

**Reducing Items and Attributes** 

→ Filter

![](_page_36_Figure_12.jpeg)

→ Attributes

![](_page_36_Figure_14.jpeg)

### www.cs.ubc.ca/~tmm/talks.html#vad20alum

### Reduce

#### → Filter

![](_page_36_Figure_19.jpeg)

![](_page_36_Figure_20.jpeg)

![](_page_36_Figure_21.jpeg)

![](_page_36_Figure_22.jpeg)

![](_page_36_Figure_23.jpeg)

## Idiom: **boxplot**

- static item aggregation
- task: find distribution
- data: table
- derived data
  - -5 quant attribs
    - median: central line
    - lower and upper quartile: boxes
    - lower upper fences: whiskers
      - -values beyond which items are outliers
  - -outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]

4

 $\sim$ 

0

N

![](_page_37_Figure_13.jpeg)

## Idiom: Dimensionality reduction for documents

attribute aggregation

-derive low-dimensional target space from high-dimensional measured space

![](_page_38_Figure_3.jpeg)

www.cs.ubc.ca/~tmm/tall<u>ks.h</u>tml#vad20alum

![](_page_38_Picture_8.jpeg)

Out Labels for clusters

- → In Clusters & points

#### Why?

![](_page_38_Picture_15.jpeg)

→ Annotate

![](_page_39_Figure_0.jpeg)

|   | Facet     |
|---|-----------|
| ) | Juxtapose |
| ) | Partition |

| $( \rightarrow)$ | Aac | irea | at |
|------------------|-----|------|----|

| Embed |
|-------|
|       |
|       |

A quick taste of my own work!

![](_page_40_Figure_1.jpeg)

### Technique-driven: Graph/network drawing

#### Daniel Archambault

![](_page_41_Picture_2.jpeg)

Benjamin Renoust

![](_page_41_Picture_4.jpeg)

David Auber (Bordeaux)

![](_page_41_Picture_6.jpeg)

Guy Melançon (Bordeaux)

![](_page_41_Picture_8.jpeg)

![](_page_41_Figure_9.jpeg)

#### https://youtu.be/AWXAe8zvkt8

TopoLayout SPF Grouse GrouseFlocks TugGraph

![](_page_41_Figure_12.jpeg)

**Detangler** <u>https://youtu.be/QOtnHSsUV6k</u>

![](_page_41_Figure_15.jpeg)

### Technique-driven: Tree drawing

### Zipeng Liu

![](_page_42_Picture_2.jpeg)

### Shing Hei Zhan

![](_page_42_Picture_4.jpeg)

B

![](_page_42_Figure_5.jpeg)

![](_page_42_Picture_6.jpeg)

#### Aggregated Dendrograms https://youtu.be/2SLcz7KNLJw

#### **TreeJuxtaposer**

#### https://youtu.be/GdaPj8a9QEo

![](_page_42_Picture_11.jpeg)

![](_page_42_Picture_12.jpeg)

![](_page_42_Picture_13.jpeg)

![](_page_42_Figure_14.jpeg)

![](_page_42_Picture_15.jpeg)

### Evaluation experiments: Graph/tree drawing

#### Dmitry Nekrasovski

![](_page_43_Picture_2.jpeg)

### Adam Bodnar

![](_page_43_Picture_4.jpeg)

#### Joanna **McGrenere**

![](_page_43_Picture_6.jpeg)

![](_page_43_Figure_7.jpeg)

Stretch and squish navigation

### Jessica Dawson

![](_page_43_Picture_10.jpeg)

#### Joanna **McGrenere**

![](_page_43_Picture_12.jpeg)

![](_page_43_Picture_13.jpeg)

Search set model of path tracing www.cs.ubc.ca/~tmm/talks.html#vad20alum

![](_page_43_Picture_15.jpeg)

![](_page_43_Picture_16.jpeg)

Ρ

![](_page_43_Picture_17.jpeg)

44

## Technique-driven: Dimensionality reduction

### Stephen Ingram

![](_page_44_Picture_2.jpeg)

![](_page_44_Figure_3.jpeg)

![](_page_44_Figure_4.jpeg)

Glint

![](_page_44_Figure_6.jpeg)

![](_page_44_Figure_7.jpeg)

**QSNE** 

#### DimStiller

![](_page_44_Picture_11.jpeg)

![](_page_44_Picture_12.jpeg)

![](_page_44_Picture_13.jpeg)

![](_page_44_Figure_14.jpeg)

### **Evaluation experiments: Dimensionality reduction**

#### Melanie Tory

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

**Points vs landscapes for** dimensionally reduced data

#### Michael Sedlmair Melanie Tory

![](_page_45_Picture_6.jpeg)

![](_page_45_Picture_7.jpeg)

![](_page_45_Figure_8.jpeg)

**Taxonomy of cluster separation factors** www.cs.ubc.ca/~tmm/talks.html#vad20alum

8

![](_page_45_Figure_10.jpeg)

![](_page_45_Figure_12.jpeg)

![](_page_45_Picture_13.jpeg)

![](_page_45_Picture_14.jpeg)

![](_page_45_Figure_15.jpeg)

### **Evaluation in the field: Dimensionality reduction**

![](_page_46_Figure_1.jpeg)

Matt Brehmer Michael Sedlmair Melanie Tory Stephen Ingram

![](_page_46_Picture_3.jpeg)

![](_page_46_Picture_6.jpeg)

![](_page_46_Picture_7.jpeg)

![](_page_46_Picture_8.jpeg)

![](_page_46_Figure_9.jpeg)

### **Problem-driven: Genomics**

Jenn Gardy

#### Aaron Barsky

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

**Robert Kincaid** (Agilent)

![](_page_47_Picture_5.jpeg)

![](_page_47_Figure_6.jpeg)

#### Cerebral https://youtu.be/76HhG1FQngl

### Miriah Meyer

![](_page_47_Picture_9.jpeg)

### Hanspeter Pfister (Harvard)

![](_page_47_Picture_11.jpeg)

![](_page_47_Figure_12.jpeg)

![](_page_47_Picture_13.jpeg)

**MizBee** https://youtu.be/86p7brwuz2g

#### MulteeSum, Pathline

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

![](_page_47_Figure_17.jpeg)

![](_page_47_Picture_18.jpeg)

F

Ε

### **Problem-driven:** Genomics, fisheries

#### Joel Ferstay

![](_page_48_Picture_2.jpeg)

### Cydney Nielsen (BC Cancer)

![](_page_48_Picture_4.jpeg)

![](_page_48_Figure_5.jpeg)

#### **Variant View** https://youtu.be/AHDnv\_qMXxQ

![](_page_48_Figure_7.jpeg)

#### Vismon

#### https://youtu.be/h0kHoS4VYmk

#### Maryam Booshehrian

![](_page_48_Picture_11.jpeg)

#### **Torsten Moeller** (SFU)

![](_page_48_Picture_13.jpeg)

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

![](_page_48_Figure_15.jpeg)

![](_page_48_Figure_16.jpeg)

![](_page_48_Picture_17.jpeg)

F

![](_page_48_Figure_18.jpeg)

![](_page_48_Figure_19.jpeg)

### Problem-driven: Tech industry

![](_page_49_Picture_1.jpeg)

Heidi Lam

#### Diane Tang (Google)

![](_page_49_Picture_3.jpeg)

#### Peter McLachlan

![](_page_49_Picture_5.jpeg)

#### Stephen North (AT&T Research)

![](_page_49_Picture_7.jpeg)

![](_page_49_Figure_8.jpeg)

#### SessionViewer: web log analysis https://youtu.be/T4MaTZd56G4

![](_page_49_Figure_10.jpeg)

#### LiveRAC: systems time-series <u>https://youtu.be/ld0c3H0VSkw</u>

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

![](_page_49_Figure_13.jpeg)

![](_page_49_Figure_14.jpeg)

F

Ε

## Problem-driven: Building energy mgmt, journalism

#### Matt Brehmer

![](_page_50_Picture_2.jpeg)

### **Kevin Tate** (Pulse/EnerNOC)

![](_page_50_Picture_4.jpeg)

![](_page_50_Figure_5.jpeg)

**Energy Manager** 

#### Matt Brehmer

![](_page_50_Picture_8.jpeg)

### Stephen Ingram

![](_page_50_Picture_10.jpeg)

### Jonathan Stray (Assoc Press)

![](_page_50_Picture_12.jpeg)

![](_page_50_Figure_13.jpeg)

https://vimeo.com/71483614

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

![](_page_50_Picture_16.jpeg)

![](_page_50_Picture_17.jpeg)

### redesign success: industrial swdev resources committed

![](_page_50_Picture_19.jpeg)

### Curation & Presentation: Timelines

![](_page_51_Figure_1.jpeg)

#### TimeLineCurator https://vimeo.com/123246662

#### Matt Brehmer

![](_page_51_Picture_4.jpeg)

### Johanna Fulda (Sud. Zeitung)

![](_page_51_Picture_6.jpeg)

![](_page_51_Figure_7.jpeg)

**Timelines Revisited** <u>timelinesrevisited.github.io/</u>

#### Matt Brehmer

![](_page_51_Picture_10.jpeg)

### Bongshin Lee (Microsoft)

![](_page_51_Picture_12.jpeg)

Benjamin Bach (Microsoft)

![](_page_51_Picture_14.jpeg)

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

![](_page_51_Picture_16.jpeg)

#### ch Nathalie Henry-Riche

![](_page_51_Picture_18.jpeg)

### Problem-driven: Current data science

#### **Kimberly Dextras-Romagnino**

![](_page_52_Picture_2.jpeg)

recent work: **Segmentifier** (Mobify)

e-commerce clickstreams

build tools for human-in-the-loop visual data analysis

#### Michael Oppermann

![](_page_52_Picture_7.jpeg)

recent work: Ocupado

![](_page_52_Figure_11.jpeg)

![](_page_52_Figure_12.jpeg)

#### https://youtu.be/TobYDFeISOg

#### www.cs.ubc.ca/~tmm/talks.html#vad20alum

![](_page_52_Figure_15.jpeg)

#### (Sensible Building Science)

#### wifi proxy for real-time building occupancy

#### visual analytics for facilities management

## Theoretical foundations: Typologies

#### Matt Brehmer

![](_page_53_Picture_2.jpeg)

![](_page_53_Figure_3.jpeg)

**Abstract Tasks** 

#### Anamaria Crisan

![](_page_53_Picture_6.jpeg)

![](_page_53_Picture_7.jpeg)

#### Regulatory & Organizational Constraints tmm/talks html#vad2

![](_page_53_Picture_9.jpeg)

#### **GEViT: Genomic Epidemiology Visualization Typology**

<u>www.cs.ubc.ca/~tmm/talks.html#vad20alum</u>

![](_page_53_Picture_12.jpeg)

![](_page_53_Figure_13.jpeg)

Ρ

### Theoretical foundations

- Visual Encoding Pitfalls
  - Unjustified Visual Encoding
  - Hammer In Search Of Nail
  - 2D Good, 3D Better
  - Color Cacophony
  - Rainbows Just Like In The Sky

#### **Papers Process & Pitfalls**

![](_page_54_Figure_8.jpeg)

#### **Design Study Methodology**

### Michael Sedlmair

![](_page_54_Picture_11.jpeg)

![](_page_54_Picture_12.jpeg)

![](_page_54_Picture_13.jpeg)

#### • Strategy Pitfalls

- What I Did Over My Summer
- Least Publishable Unit
- Dense As Plutonium
- Bad Slice and Dice

![](_page_54_Picture_19.jpeg)

#### **Nested Model**

![](_page_54_Picture_21.jpeg)

**Visualization Analysis & Design** 

| ACPosters Viscallization Bertes                      |
|------------------------------------------------------|
| Visualization<br>Analysis & Design<br>Tamara Munzner |
|                                                      |

## More Information

• this talk

http://www.cs.ubc.ca/~tmm/talks.html#vad20alum

- book page (including tutorial lecture slides) <u>http://www.cs.ubc.ca/~tmm/vadbook</u>
  - -20% promo code for book+ebook combo: HVN17
  - http://www.crcpress.com/product/isbn/9781466508910

- illustrations: Eamonn Maguire

 papers, videos, software, talks, courses <u>http://www.cs.ubc.ca/group/infovis</u> <u>http://www.cs.ubc.ca/~tmm</u>

www.cs.ubc.ca/~tmm/talks.html#vad20alum

Visualization Analysis and Design. Munzner. A K Peters Visualization Series, CRC Press, Visualization Series, 2014.

#### <u>@tamaramunzner</u>

![](_page_55_Picture_11.jpeg)

#### Visualization Analysis & Design

Tamara Munzner

 Exercise to the reserved on the