Visualization Analysis \& Design

Tamara Munzner

Department of Computer Science University of British Columbia

UBC Alumni/Industry Lecture
Feb 27 2020, Vancouver BC
UBC
Data Science Institute

DESIGNING for PEOPLE

CAIDA

@tamaramunzner

Visualization: definition \& motivation

Computer-based xismalization systems provide visual representations of datasets designed to hel people arry out tasks more effectively.
Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- human in the loop needs the details \& no trusted automatic solution exists
-doesn't know exactly what questions to ask in advance
-exploratory data analysis
- speed up through human-in-the-loop visual data analysis
-present known results to others
-stepping stone towards automation
-before model creation to provide understanding
-during algorithm creation to refine, debug, set parameters
-before or during deployment to build trust and monitor
more at:
Visualization Analysis and Design.
www.cs.ubc.ca/~tmm/talks.html\#vad20alum

Why analyze?

- imposes a structure on huge design space
-scaffold to help you think systematically about choices
-analyzing existing as stepping stone to designing new

What?

Why?

Θ Actions
\rightarrow Present \rightarrow Locate \rightarrow Identify

Θ Targets
\rightarrow Path between two nodes

Θ Tree

SpaceTree

[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57-64.]

TreeJuxtaposer

[TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context With Guaranteed Visibility.ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453-462, 2003.]

How?
Θ SpaceTree
\rightarrow Encode \rightarrow Navigate \rightarrow Select \rightarrow Filter \rightarrow Aggregate

Θ TreeJuxtaposer
\rightarrow Encode \rightarrow Navigate \rightarrow Select \rightarrow Arrange

What?

Why?

How?

Analysis framework: Four levels, three questions

- domain situation
- who are the target users?
- abstraction
-translate from specifics of domain to vocabulary of vis
- what is shown? data abstraction
- often don't just draw what you're given: transform to new form
- why is the user looking at it? task abstraction
- idiom
- how is it shown?
- visual encoding idiom: how to draw
[A Nested Model of Visualization Design and Validation.
Munzner. IEEETVCG I5(6):92I-928, 2009 (Proc. InfoVis 2009).]
- interaction idiom: how to manipulate
- algorithm
-efficient computation

[^0]
Why is validation difficult?

- different ways to get it wrong at each level

D Domain situation
You misunderstood their needs

Data/task abstraction
You're showing them the wrong thingVisual encoding/interaction idiom
The way you show it doesn't work
m Algorithm
Your code is too slow

Why is validation difficult?

- solution: use methods from different fields at each level

What?

Why?

How?
Θ Data Types
$\quad \rightarrow$ Items \rightarrow Attributes \rightarrow Links \rightarrow Positions \rightarrow Grids
Θ Data and Dataset Types

Tables	 Trees	Fields	Geometry	Clusters, Sets, Lists
Items	Items (nodes)	Grids	Items	Items
Attributes	Links	Positions	Positions	
	Attributes	Attributes		

Θ Dataset Types
\rightarrow Tables

\rightarrow Multidimensional Table

\rightarrow Geometry (Spatial)

\rightarrow Networks

\rightarrow Trees
000
\rightarrow Fields (Continuous)
Grid of positions

Value in cell
Θ Dataset Availability
\rightarrow Static

Θ Ordering Direction
\rightarrow Sequential
\rightarrow Diverging

\rightarrow Cyclic

Types: Datasets and data

Θ Dataset Types
\rightarrow Tables
\rightarrow Networks

Attributes (columns)

Θ Attribute Types
\rightarrow Categorical

\rightarrow Ordered

$$
\rightarrow \text { Ordinal }
$$

\rightarrow Spatial
\rightarrow Fields (Continuous) $\quad \rightarrow$ Geometry (Spatial)

\rightarrow Quantitative
\qquad

Why?

Analyze
\rightarrow Consume

\rightarrow Produce

Θ
Search

	Target known	Target unk
Location known	\cdot Lookup	\bullet - Browse
Location unknown	<-O.-> Locate	<.O.-> Explo

- \{action, target\} pairs
- discover distribution
- compare trends
- locate outliers
-browse topology
Θ All Data

Θ
Attributes

\rightarrow Extremes illir.Network Data
\rightarrow Topology

\rightarrow Paths
Θ Spatial Data
\rightarrow Shape

Actions:Analyze, Query

- analyze
- consume
- discover vs present - aka explore vs explain
- enjoy
-aka casual, social
-produce
- annotate, record, derive
- query
-how much data matters?
- one, some, all
- independent choices
- analyze, query, (search)
Θ Analyze
\rightarrow Consume

\rightarrow Produce
\rightarrow Annotate

\leftrightarrow Query
\rightarrow Identify

-

Derive: Crucial Design Choice

- don't just draw what you're given!
-decide what the right thing to show is
-create it with a series of transformations from the original dataset -draw that
- one of the four major strategies for handling complexity

Original Data

trade balance $=$ exports - imports
Derived Data

Analysis example：Derive one attribute

－Strahler number
－centrality metric for trees／networks
－derived quantitative attribute
－draw top 5 K of 500 K for good skeleton
［Using Strahler numbers for real time visual exploration of huge graphs．Auber Proc．Intl．Conf．Computer Vision and Graphics，pp．56－69，2002．］

Task 1

In Tree

.94
Out
\Rightarrow Quantitative attribute on nodes

What？

Task 2

In
$\Rightarrow \quad$ Tree

In
$+$
$+$
Quantitative attribute on nodes
\Rightarrow Filtered Tree
Removed
unimportant parts

What？	Why？	How？
$\Theta ⿱ ㇒ 日 勺$		
Θ In Tree	Θ Summarize	Θ Reduce
Θ In Quantitative attribute on nodes	Θ Topology	Θ Filter
Θ Out Filtered Tree		

Targets

Θ All Data

\leftrightarrow Attributes

Θ Network Data
\rightarrow Topology

\rightarrow Paths

Θ Spatial Data
\rightarrow Shape

Encode

What?

Why?

How?

Θ Map

from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, .

- ■ I
\rightarrow Shape
$+\quad \square \Delta$
\rightarrow Motion
Direction, Rate, Frequency, ...

Manipulate
\qquad Facet Reduce
Θ Change

Θ Juxtapose

Θ Partition

Θ Navigate

Superimpose

Θ Filter

Θ Aggregate

Θ Embed

How to encode: Arrange space, map channels

Encode

Θ Map
from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...
-■ (1/ー ()))

```
\(\rightarrow\) Shape
\(+\square \square\)
```

\rightarrow Motion
Direction, Rate, Frequency, ...

Definitions: Marks and channels

- marks
Θ Points
Θ Lines
Θ Areas
- geometric primitives
- one per item

- channels
- control appearance of marks
Θ Position
\rightarrow Horizontal

Θ Shape
\rightarrow Vertical
Φ
\rightarrow Both
$\cdot \cdot$
Θ Color

Θ Tilt

A *

\rightarrow Area

Encoding visually with marks and channels

- analyze idiom structure
-as combination of marks and channels

1:
vertical position

2 :
vertical position horizontal position

3:
vertical position horizontal position color hue

4: vertical position
horizontal position color hue size (area)
mark: point

Channels

Channels: Matching Types
Θ Magnitude Channels: Ordered Attributes
Position on common scale
Position on unaligned scale

Length (1D size)

Area (2D size)

Depth (3D position)
Color luminance

Color saturation

Curvature

Volume (3D size)
Θ Identity Channels: Categorical Attributes
Spatial region

Color hue

Motion

Shape

- expressiveness principle

-match channel and data characteristics

Channels: Rankings

Θ Magnitude Channels: Ordered Attributes

Θ Identity Channels: Categorical Attributes
Spatial region
Color hue

Motion

Shape

- expressiveness
-match channel and data characteristics
- effectiveness
- channels differ in accuracy of perception
- distinguishability
- match available levels in channel w/ data ${ }_{20}$

Categorical vs ordered color

[Seriously Colorful: Advanced Color Principles \& Practices. Stone.Tableau Customer Conference 20I4.]

Decomposing color

- first rule of color: do not talk about color!
- color is confusing if treated as monolithic
- decompose into three channels
- ordered can show magnitude
- luminance: how bright
- saturation: how colorful
- categorical can show identity
- hue: what color

- caveat: not well supported by current tools
- channels have different properties
- what they convey directly to perceptual system
-how much they can convey: how many discriminable bins can we use?

Categorical color: limited number of discriminable bins

- human perception built on relative comparisons
-great if color contiguous
- surprisingly bad for absolute comparisons
- noncontiguous small regions of color
-fewer bins than you want
-rule of thumb: 6-12 bins, including background and highlights
- alternatives? other talks!

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
-perceptually nonlinear
- benefits
-small-scale structure: see \& name

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. I I8-I 25, I995.]
- large-scale structure: fewer hues
-known structure: segmented -have it both ways, small+large:
-multiple hues
-monotonically increasing luminance

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

Viridis / Magma

- colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

How to handle complexity: 3 more strategies $+I$ previous
Manipulate
Θ Change

Θ Select

Θ Navigate

Facet
Θ Juxtapose

Θ Partition

Θ Superimpose

Θ Aggregate

Θ Embed

\rightarrow Derive

Θ Select

Θ Navigate

Θ Partition

Θ Superimpose

Θ Aggregate

\rightarrow Derive

- change over time
- most obvious \& flexible of the 4 strategies

Θ Embed

- facet data across multiple views

Idiom: Linked highlighting

System: EDV

- see how regions contiguous in one view are distributed within another
-powerful and pervasive interaction idiom
- encoding: different
- data: all shared

[Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237-246. IOS Press, 1995.]

Idiom: bird's-eye maps

System: Google Maps

- encoding: same
- data: subset shared
- navigation: shared -bidirectional linking
- differences
-viewpoint
-(size)

- overview-detail
[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.]

Idiom: Small multiples

System: Cerebral

- encoding: same
- data: none shared
-nodes colored differently for each time/condition case
-(same network layout)
- navigation: shared

Coordinate views: Design choice interaction

		Data					
		All	Subset	None			
	Same	Redundant	Overview/ Detail				
	Different	$\\|\\|\\| \cdot$ Multiform	Multiform, Overview/ Detail	No Linkage			

- why juxtapose views?
-benefits: eyes vs memory
- lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
-costs: display area, 2 views side by side each have only half the area of one view

Idiom: Animation (change over time)

- weaknesses
-widespread changes
-disparate frames
- strengths
-choreographed storytelling
-localized differences between contiguous frames
-animated transitions between states

LPSLL37_1

How to handle complexity: 3 more strategies

+ I previous

Reduce items and attributes

- reduce/increase: inverses
- filter
-pro: straightforward and intuitive
- to understand and compute
-con: out of sight, out of mind
- aggregation
-pro: inform about whole set -con: difficult to avoid losing signal
- not mutually exclusive -combine filter, aggregate
-combine reduce, facet, change, deri
Θ Filter
\rightarrow Items

\rightarrow Attributes

Θ Aggregate
\rightarrow Items

\rightarrow Attributes

Θ Filter

Θ Aggregate

Θ Embed

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
-5 quant attribs
- median: central line
- lower and upper quartile: boxes
- lower upper fences: whiskers
- values beyond which items are outliers

-outliers beyond fence cutoffs explicitly shown

Idiom: Dimensionality reduction for documents
 - attribute aggregation

-derive low-dimensional target space from high-dimensional measured space

Task 1			
			$\bar{\square}$
Item 1		Item 1	
Item ...		Item ...	
Item n		Item n	
In Out			
HD data		2D data	

What?	Why?
Θ In High- dimensional data	Θ Produce
Θ Derive	

Task 3

Out
\Rightarrow Labels for clusters

A quick taste of my own work!

Technique-driven: Graph/network drawing

Daniel
Archambault

Benjamin Renoust

David Auber (Bordeaux)

Guy Melançon (Bordeaux)

Detangler
https://youtu.be/QOtnHSsUV6k

Technique-driven:Tree drawing

Zipeng Liu Shing Hei Zhan

Aggregated Dendrograms

https://youtu.be/2SLcz7KNLJw

TreeJuxtaposer

https://youtu.be/GdaPi8a9QEo

Evaluation experiments: Graph/tree drawing

Joanna

Jessica Dawson

Adam Bodnar
McGrenere

Stretch and squish navigation

Joanna
McGrenere

Search set model of path tracing

Technique-driven: Dimensionality reduction

Stephen Ingram

Glimmer

DimStiller

Evaluation experiments: Dimensionality reduction

Melanie Tory

Points vs landscapes for dimensionally reduced data

Michael Sedlmair Melanie Tory

Taxonomy of cluster separation factors

Evaluation in the field: Dimensionality reduction

Problem-driven: Genomics

MizBee
https://youtu.be/86p7brwuz2g

Cerebral
https://youtu.be/76HhG1FQngl

Problem-driven: Genomics, fisheries

Problem-driven:Tech industry

SessionViewer: web log analysis https://youtu.be/T4MaTZd56G4

LiveRAC: systems time-series https://youtu.be/ldOc3HOVSkw

Problem-driven: Building energy mgmt, journalism

redesign success: industrial swdev resources committed

Stephen Ingram

Curation \& Presentation:Timelines

TimeLineCurator https://vimeo.com/123246662

Timelines Revisited
timelinesrevisited.github.io/

Johanna Fulda
Matt Brehmer

Matt Brehmer

(Sud. Zeitung)

Bongshin Lee (Microsoft)

Benjamin Bach (Microsoft)

Nathalie HenryRiche

Problem-driven: Current data science

Kimberly Dextras-Romagnino

recent work: Segmentifier (Mobify)
e-commerce clickstreams
build tools for human-in-the-loop visual data analysis

recent work:
Ocupado
(Sensible Building Science)
wifi proxy for real-time building occupancy
visual analytics for facilities management

https://youtu.be/TobYDFelSOg

Theoretical foundations:Typologies

Matt Brehmer

Abstract Tasks

Anamaria

Regulatory \& Organizational Constraints

GEViT: Genomic Epidemiology Visualization Typology

Theoretical foundations

- Visual Encoding Pitfalls	- Strategy Pitfalls
- Unjustified Visual Encoding	- What I Did Over My Summer
- Hammer In Search Of Nail	- Least Publishable Unit
- 2D Good, 3D Better	- Dense As Plutonium
- Color Cacophony	- Bad Slice and Dice
- Rainbows Just Like InThe Sky	

Papers Process \& Pitfalls

Design Study Methodology

Nested Model

Visualization Analysis \& Design

More Information

- this talk
http://www.cs.ubc.ca/~tmm/talks.html\#vad20alum
- book page (including tutorial lecture slides) http://www.cs.ubc.ca/~tmm/vadbook
- 20\% promo code for book+ebook combo: HVNI7
- http://www.crcpress.com/product/isbn/9781466508910
- illustrations: Eamonn Maguire
- papers, videos, software, talks, courses http://www.cs.ubc.ca/group/infovis http://www.cs.ubc.ca/~tmm

[^0]: Brehmer and Munzner. IEEE TVCG 19(I2):2376-2385, 2013 (Proc. InfoVis 2013).]

