Visualization Analysis & Design

Tamara Munzner Department of Computer Science University of British Columbia

Data Visualization Masterclass: Principles, Tools, and Storytelling June 13 2017, VIZBI/VIVID, Sydney Australia

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney

Outline

- Session 1: Principles 9:15-10:30am
 - -Analysis: What, Why, How
 - -Marks and Channels, Perception

-Color

- Session 2: Techniques for Scaling 10:50-11:40am
 - -Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - -Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney

2

Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to hele people arry out tasks more effectively. Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

don't need vis when fully automatic solution exists and is trusted

many analysis problems ill-specified

-don't know exactly what questions to ask in advance

- possibilities
 - -long-term use for end users (e.g. exploratory analysis of scientific data)
 - presentation of known results
 - stepping stone to better understanding of requirements before developing models
 - -help developers of automatic solution refine/debug, determine parameters
 - -help end users of automatic solutions verify, build trust

Why use an external representation?

Computer-based visualization systems providevisual representations of datasets designed to help people carry out tasks more effectively.

• external representation: replace cognition with perception

Expression color scale

Why represent all the data?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
 - -confirm expected and find unexpected patterns
 - -assess validity of statistical model Anscombe's Quartet

Identical statistics 9 x mean x variance 10 7.5 y mean 3.75 y variance x/y correlation 0.816

https://www.youtube.com/watch?v=DbJyPELmhJc

Same Stats, Different Graphs

Why are there resource limitations?

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

- computational limits
 - -processing time
 - -system memory
- human limits
 - –human attention and memory
- display limits
 - -pixels are precious resource, the most constrained resource
 - -information density: ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and wasting space, find sweet spot between dense and sparse

Analysis framework: Four levels, three questions

- domain situation
 - -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
- what is shown? data abstraction
- why is the user looking at it? task abstraction
- idiom
- how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
- algorithm
 - -efficient computation

[A Nested Model of Visualization Design and Validation.

Munzner. IEEETVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

[A Multi-Level Typology of Abstract Visualization Tasks Brehmer and Munzner. IEEETVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013).]

Validation methods from different fields for each level

anthropology/ ethnography

anthropology/ ethnography

Domain situation

Observe target users using existing tools

Data/task abstraction

Visual encoding/interaction idiom Justify design with respect to alternatives

Algorithm

Measure system time/memory Analyze computational complexity

Analyze results qualitatively

Measure human time with lab experiment (*lab study*)

Observe target users after deployment (*field study*)

Measure adoption

- mismatch: cannot show idiom good with system timings
- mismatch: cannot show abstraction good with lab study

design

computer science

cognitive psychology

Why analyze?

- imposes a structure on huge design space
 - -scaffold to help you think systematically about choices
 - analyzing existing as stepping stone to designing new

SpaceTree

[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57–64.]

What?	Why?	How?	Proc. InfoVis 2002, p 57–64.]	
	 ⇒ Actions ⇒ Present → Locate → Identify 	→ SpaceTree→ Encode	e →Navigate → Select	→ Filte
	 ✓ Interpretended ✓ Interp	→ TreeJuxta	¢>	•
	→ Path between two nodes	→ Encode	 → Navigate → Select ✓···> 	→ Arra

TreeJuxtaposer

[TreeJuxtaposer: Scalable Tree Comparison Using Focus +Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453–462, 2003.]

			What?		
	D	atasets			A
 → Data Types → Items → → Data and Dat Tables 	Attributes aset Types	→ Links Fields	→ Positions	→ Grids	 → Attribut → Cate + → Ord
Items Attributes	Trees Items (nodes) Links Attributes	Grids Positions Attributes	Items Positions	Sets, Lists Items	→ Or ↑ → Qu
→ Dataset Type → Tables Attribute (rows) Cell con → Multidimen Key 2 Attributes	S → N es (columns) taining value <i>sional Table</i> Value in cell	Vetworks	→ Fields (Co Grid (Node (item)	tes (columns)	 → Orderin → Sequ → Diven → Cyclic ↓
→ Geometry	(Spatial) Position		 → Dataset A → Static 	vailability	→ Dynamic

Attributes

ute Types

egorical

dered

rdinal

uantitative

ing Direction

uential

erging

ic

Dataset and data types

Dataset Types \rightarrow

→ Tables

→ Fields (Continuous)

Attribute Types \rightarrow

→ Categorical

→ Ordered

 \rightarrow Ordinal

 \rightarrow Quantitative

Actions I:Analyze

- consume
 - -discover vs present
 - classic split
 - aka explore vs explain
 - -enjoy
 - newcomer
 - aka casual, social
- produce
 - -annotate, record
 - -derive
 - crucial design choice

Actions II: Search

what does user know? → Search —target, location

	Target k	nown
Location known	• • • •	Lookup
Location unknown	< <u>@</u> .>	Locate

Actions III: Query

- what does user know? → Search
 –target, location
- how much of the data matters?
 - -one, some, all

	Target k	known
Location known	• • • •	Lookup
Location unknown	< <u>O</u> .>	Locate

Targets

 $(\rightarrow$

→ All Data

→ Attributes

→ Shape

How?

Encode			Manipulate	
→ Arrange→ Express	→ Separate	 Map from categorical and ordered attributes 	Ohange Image	
→ Order	→ Align	$\rightarrow Color$ $\rightarrow Hue \qquad \rightarrow Saturation \rightarrow Luminance$	Select	
→ Use		→ Size, Angle, Curvature, ■ ■ □ /// □)))	→ Navigate	
		→ Shape + ● ■ ▲		
What? Why? How?		Motion Direction, Rate, Frequency,		

	

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
 - -Chap I: What's Vis, and Why Do It?
 - Chap 2: What: Data Abstraction
 - Chap 3: Why: Task Abstraction
- A Multi-Level Typology of Abstract Visualization Tasks. Brehmer and Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis) 19:12 (2013), 2376–2385.
- Low-Level Components of Analytic Activity in Information Visualization. Amar, Eagan, and Stasko. Proc. IEEE InfoVis 2005, p 111–117.
- A taxonomy of tools that support the fluent and flexible use of visualizations. Heer and Shneiderman. Communications of the ACM 55:4 (2012), 45–54.
- Rethinking Visualization: A High-Level Taxonomy. Tory and Möller. Proc. IEEE InfoVis 2004, p 151– 158.
- Visualization of Time-Oriented Data. Aigner, Miksch, Schumann, and Tominski. Springer, 2011.

Outline

- Session 1: Principles 9:15-10:30am
 - -Analysis: What, Why, How
 - -Marks and Channels, Perception
 - -Color
- Session 2: Techniques for Scaling 10:50-11:40am
 - -Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - -Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney

20

Encoding visually

• analyze idiom structure

Definitions: Marks and channels

Encoding visually with marks and channels

• analyze idiom structure

-as combination of marks and channels

1: vertical position

2: vertical position horizontal position 3:

vertical position horizontal position color hue

mark: line

mark: point

mark: point

4: vertical position horizontal position color hue size (area)

mark: point

Channels

Channels: Rankings

- effectiveness principle
- -encode most important attributes with highest ranked channels
- expressiveness principle
- -match channel and data characteristics

Accuracy: Fundamental Theory

Steven's Psychophysical Power Law: S= I^N

26

Accuracy: Vis experiments

Cleveland & McGill's Results

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203– 212.]

Discriminability: How many usable steps?

 must be sufficient for number of attribute levels to show

-linewidth: few bins

[mappa.mundi.net/maps/maps 014/telegeography.html]

Separability vs. Integrality

Position + Hue (Color)

Fully separable

Size + Hue (Color)

Width + Height

Some interference

Some/significant interference

2 groups each

2 groups each

3 groups total: integral area

Red + Green

Major interference

4 groups total: integral hue

Further reading

 Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.

- Chap 5: Marks and Channels

- On the Theory of Scales of Measurement. Stevens. Science 103:2684 (1946), 677–680.
- Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects. Stevens. Wiley, 1975.
- Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531–554.
- Perception in Vision. Healey. <u>http://www.csc.ncsu.edu/faculty/healey/PP</u>
- Visual Thinking for Design. Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann / Academic Press, 2004.

Outline

- Session 1: Principles 9:15-10:30am
 - -Analysis: What, Why, How
 - -Marks and Channels, Perception

-Color

- Session 2: Techniques for Scaling 10:50-11:40am
 - -Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - -Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney

31

How?

Challenges of Color

Top 10 HSC subjects (excluding English)

Categorical vs ordered color

Annual sales by state

Stone.Tableau Customer Conference 2014.]

[Seriously Colorful: Advanced Color Principles & Practices.

Decomposing color

- first rule of color: do not talk about color! -color is confusing if treated as monolithic
- decompose into three channels
 - -ordered can show magnitude
 - Iuminance
 - saturation
 - -categorical can show identity

• hue

channels have different properties

-what they convey directly to perceptual system

-how much they can convey: how many discriminable bins can we use?

Luminance

- need luminance for edge detection
 - -fine-grained detail only visible through luminance contrast
 - -legible text requires luminance contrast!
- intrinsic perceptual ordering

Lightness information

Stone.Tableau Customer Conference 2014.]

[Seriously Colorful: Advanced Color Principles & Practices.
Categorical color: limited number of discriminable bins

- human perception built on relative comparisons

 great if color contiguous
 surprisingly bad for absolute comparisons
- noncontiguous small regions of color
 - -fewer bins than you want
 - -rule of thumb: 6-12 bins, including background and highlights

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

ColorBrewer

- <u>http://www.colorbrewer2.org</u>
- saturation and area example: size affects salience!

problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - -fine-grained structure visible and nameable

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - -fine-grained structure visible and nameable
- alternatives
 - -large-scale structure: fewer hues

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

• problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - –large-scale structure: fewer hues
 - –fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

Viridis

 colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

heat

ggplot defaul

brewer blues

brewer yellow-gree

1-blue	
h-blue	
_	

42

• problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - –large-scale structure: fewer hues
 - -fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
 - -segmented rainbows for binned or categorical

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/lloydt/color/color.HTM]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

Colormaps

• use high saturation for small regions, low saturation for large

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
 - Chap 10: Map Color and Other Channels
- ColorBrewer, Brewer.
 - http://www.colorbrewer2.org
- Color In Information Display. Stone. IEEE Vis Course Notes, 2006.
 - <u>http://www.stonesc.com/Vis06</u>
- A Field Guide to Digital Color. Stone. AK Peters, 2003.
- Rainbow Color Map (Still) Considered Harmful. Borland and Taylor. IEEE Computer Graphics and Applications 27:2 (2007), 14–17.
- Visual Thinking for Design. Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann /Academic Press, 2004.

Outline

- Session 1: Principles 9:15-10:30am
 - -Analysis: What, Why, How
 - -Marks and Channels, Perception

-Color

- Coffee Break 10:30-10:50am
- Session 2: Techniques for Scaling 10:50-11:40am
 - -Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - -Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney

46

Outline

- Session 1: Principles 9:15-10:30am
 - -Analysis: What, Why, How
 - -Marks and Channels, Perception
 - -Color
- Session 2: Techniques for Scaling 10:50-11:40am
 - -Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney

47

How?

How to handle complexity: 3 more strategies

- change view over time
 facet across multiple views
- reduce items/attributes within single view
- derive new data to show within view

How to handle complexity: 3 more strategies

change over time most obvious & flexible of the 4 strategies

Change over time

- change any of the other choices

 –encoding itself
 - -parameters
 - -arrange: rearrange, reorder
 - -aggregation level, what is filtered...
- why change?
 - -one of four major strategies
 - change over time
 - facet data by partitioning into multiple views
 - reduce amount of data shown within view
 - embedding focus + context together
 - -most obvious, powerful, flexible
 - -interaction entails change

51

Idiom: Realign

- stacked bars
 - -easy to compare
 - first segment
 - total bar
- align to different segment -supports flexible comparison

[LineUp:Visual Analysis of Multi-Attribute Rankings.Gratzl, Lex, Gehlenborg, Pfister, and Streit. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2013) 19:12 (2013), 2277–2286.]

System: LineUp

Idiom: Animated transitions

smooth transition from one state to another

-alternative to jump cuts

- -support for item tracking when amount of change is limited
- example: multilevel matrix views
- example: animated transitions in statistical data graphics
 - <u>https://vimeo.com/19278444</u>

[Using Multilevel Call Matrices in Large Software Projects. van Ham. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 227–232, 2003.]

Manipulate

→ Attribute Reduction

→ Cut

→ Project

Further reading

 Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.

-Chap 11: Manipulate View

- Animated Transitions in Statistical Data Graphics. Heer and Robertson. IEEE Trans. on Visualization and Computer Graphics (Proc. InfoVis07) 13:6 (2007), 1240-1247.
- Selection: 524,288 Ways to Say "This is Interesting". Wills. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 54–61, 1996.
- Smooth and efficient zooming and panning. van Wijk and Nuij. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 15–22, 2003.
- Starting Simple adding value to static visualisation through simple interaction. Dix and Ellis. Proc. Advanced Visual Interfaces (AVI), pp. 124–134, 1998.

Outline

- Session 1: Principles 9:15-10:30am
 - -Analysis: What, Why, How
 - -Marks and Channels, Perception
 - -Color
- Session 2: Techniques for Scaling 10:50-11:40am
 - -Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney

56

How to handle complexity: 3 more strategies

facet data across multiple views

Facet

Juxtapose (\rightarrow)

Partition (\rightarrow)

••

Superimpose (\rightarrow)

- Coordinate Multiple Side By Side Views
 - → Share Encoding: Same/Different
 - → Linked Highlighting

→ Share Data: All/Subset/None

→ Share Navigation

Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
 - -powerful and pervasive interaction idiom
- encoding: different -multiform
- data: all shared

[Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237–246. IOS Press, 1995.]

System: **EDV**

Idiom: bird's-eye maps

- encoding: same
- data: subset shared
- navigation: shared -bidirectional linking
- differences
 - -viewpoint
 - -(size)
- overview-detail

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1-31.]

System: Google Maps

Idiom: Small multiples

- encoding: same
- data: none shared
 - -different attributes for node colors
 - -(same network layout)
- navigation: shared

[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14:6 (2008), 1253–1260.]

System: Cerebral

Coordinate views: Design choice interaction

- why juxtapose views?
 - -benefits: eyes vs memory
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 - -costs: display area, 2 views side by side each have only half the area of one view

Idiom: Animation (change over time)

- weaknesses
 - -widespread changes-disparate frames
- strengths
 - -choreographed storytelling
 - –localized differences between contiguous frames
 - animated transitions between states

Partition into views

- how to divide data between views
 - encodes association between items using spatial proximity
 - -major implications for what patterns are visible
 - -split according to attributes
- design choices
 - -how many splits
 - all the way down: one mark per region?
 - stop earlier, for more complex structure within region?
 - -order in which attribs used to split

Partition into Side-by-Side Views

Partitioning: List alignment

- single bar chart with grouped bars
 - -split by state into regions
 - complex glyph within each region showing all ages
 - -compare: easy within state, hard across ages

- - -split by age into regions
 - one chart per region
 - -compare: easy within age, harder across states

• small-multiple bar charts

_				
K	NY	FL	IL	PA

Partitioning: Recursive subdivision

- split by type
- then by neighborhood
- then time
 - -years as rows
 - -months as columns

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) 15:6 (2009), 977–984.]

System: **HIVE**

Partitioning: Recursive subdivision

- switch order of splits -neighborhood then type
- very different patterns

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) 15:6 (2009), 977–984.]

System: **HIVE**

Partitioning: Recursive subdivision

 different encoding for second-level regions -choropleth maps

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) 15:6 (2009), 977–984.]

System: **HIVE**

Superimpose layers

layer: set of objects spread out over region

 –each set is visually distinguishable group

 (\rightarrow)

- -extent: whole view
- design choices
 - -how many layers?
 - -how are layers distinguished?
 - -small static set or dynamic from many possible?
 - -how partitioned?
 - heavyweight with attribs vs lightweight with selection
- distinguishable layers
 - -encode with different, nonoverlapping channels
 - two layers achieveable, three with careful design

Static visual layering

- foreground layer: roads -hue, size distinguishing main from minor -high luminance contrast from background
- background layer: regions -desaturated colors for water, parks, land areas
- user can selectively focus attention
- "get it right in black and white" -check luminance contrast with greyscale view

[Get it right in black and white. Stone. 2010. http://www.stonesc.com/wordpress/2010/03/get-it-right-in-black-and-white]

Superimposing limits

- few layers, but many lines
 - -up to a few dozen
 - -but not hundreds
- superimpose vs juxtapose: empirical study
 - -superimposed for local visual, multiple for global
 - -same screen space for all multiples, single superimposed
 - -tasks
 - local: maximum, global: slope, discrimination

[Graphical Perception of Multiple Time Series. Javed, McDonnel, and Elmqvist. IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE InfoVis 2010) 16:6 (2010), 927–934.]

Dynamic visual layering

- interactive, from selection
 - –lightweight: click
 - -very lightweight: hover
- ex: I-hop neighbors

[Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Barsky, Gardy, Hancock, and Munzner. Bioinformatics 23:8 (2007), 1040–1042.]

System: Cerebral
Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
 - Chap 12: Facet Into Multiple Views
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1–31.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.
- Zooming versus multiple window interfaces: Cognitive costs of visual comparisons. Plumlee and Ware. ACM Trans. on Computer-Human Interaction (ToCHI) 13:2 (2006), 179–209.
- Exploring the Design Space of Composite Visualization. Javed and Elmqvist. Proc. Pacific Visualization Symp. (Pacific Vis), pp. 1–9, 2012.
- Visual Comparison for Information Visualization. Gleicher, Albers, Walker, Jusufi, Hansen, and Roberts. Information Visualization 10:4 (2011), 289–309.
- Guidelines for Using Multiple Views in Information Visualizations. Baldonado, Woodruff, and Kuchinsky. In Proc. ACM Advanced Visual Interfaces (AVI), pp. 110–119, 2000.
- Cross-Filtered Views for Multidimensional Visual Analysis. Weaver. IEEE Trans. Visualization and Computer Graphics 16:2 (Proc. InfoVis 2010), 192–204, 2010.
- Linked Data Views. Wills. In Handbook of Data Visualization, Computational Statistics, edited by Unwin, Chen, and Härdle, pp. 216-241. Springer-Verlag, 2008.
- Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications. Borgo, Kehrer, Chung, Maguire, Laramee, Hauser, Ward, and Chen. In Eurographics State of the Art Reports, pp. 39–63, 2013.

Outline

- Session 1: Principles 9:15-10:30am
 - -Analysis: What, Why, How
 - -Marks and Channels, Perception

-Color

- Session 2: Techniques for Scaling 10:50-11:40am
 - -Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - -Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney

74

How to handle complexity: 3 more strategies

reduce what is shown within single view

Reduce items and attributes

- reduce/increase: inverses
- filter
 - -pro: straightforward and intuitive
 - to understand and compute -con: out of sight, out of mind
- aggregation
 - -pro: inform about whole set
 - -con: difficult to avoid losing signal
- not mutually exclusive -combine filter, aggregate -combine reduce, facet, change, derive

Reducing Items and Attributes

→ Filter

→ Attributes

Reduce

→ Filter

Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data

-new table: keys are bins, values are counts

bin size crucial

-pattern can change dramatically depending on discretization

-opportunity for interaction: control bin size on the fly

Idiom: **boxplot**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - -5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - -values beyond which items are outliers
 - -outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]

4

 \sim

0

N

Idiom: Hierarchical parallel coordinates

- dynamic item aggregation
- derived data: hierarchical clustering
- encoding:

-cluster band with variable transparency, line at mean, width by min/max values

-color by proximity in hierarchy

[Hierarchical Parallel Coordinates for Exploration of Large Datasets. Fua, Ward, and Rundensteiner. Proc. IEEE Visualization Conference (Vis '99), pp. 43–50, 1999.]

Dimensionality reduction

- attribute aggregation
 - -derive low-dimensional target space from high-dimensional measured space
 - -use when you can't directly measure what you care about
 - true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
 - latent factors, hidden variables

Malignant DR

data: 9D measured space

derived data: 2D target space

Idiom: Dimensionality reduction for documents

Out Labels for clusters

- → In Clusters & points

Why?

- → Produce
- → Annotate

Further reading

 Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.

-Chap 13: Reduce Items and Attributes

- Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines. Elmqvist and Fekete. IEEE Transactions on Visualization and Computer Graphics 16:3 (2010), 439–454.
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1–31.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.

More Information

• this talk

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney

- book page (including tutorial lecture slides) http://www.cs.ubc.ca/~tmm/vadbook
 - -20% promo code for book+ebook combo: HVN17
 - <u>http://www.crcpress.com/product/isbn/9781466508910</u>
 - -illustrations: Eamonn Maguire
- papers, videos, software, talks, full courses http://www.cs.ubc.ca/group/infovis http://www.cs.ubc.ca/~tmm

Illustrations by Ramonn Maguire

Visualization Analysis and Design. Munzner. A K Peters Visualization Series, CRC Press, Visualization Series, 2014.

(*a*)tamaramunzner

Visualization Analysis & Design

Tamara Munzner

