Separability vs. Integrality

2 groups each: integral area
4 groups total: integral area

Height
Red
Green
Fully separable
Some interference
Some/significant interference
Major interference

2 groups each: integral area
3 groups total: integral area
4 groups total: integral area

Spatial position ranks high for both

Categorical color: limited number of discriminable bins

Human perception built on relative comparisons
• great if color contiguous
• surprisingly bad for absolute comparisons

Noncontiguous small regions of color
• fewer less than you were

Categorical color: limited number of discriminable bins

• http://www.colorbrewer.org

• saturation and area example: size affects salience!

Categorical color: limited number of discriminable bins

• http://www.colorbrewer.org

• saturation and area example: size affects salience!
Ordered color: Rainbow is poor default

- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - five-grained structure visible
 - rememble
- alternatives
 - large-scale structure fewer hues
 - fine-structure multiple hues with monotonically increasing luminance (eg viridis, Kryphon)

Viridis
- colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance
- limited contrast
- scalable
- perceptually ordered

Express Values

Tables

- Attributes (columns)
- Items (rows)
- Cell containing value

Multidimensional Table

- Value in cell

Alignment

- **Encode**
 - Arrange
 - Order
 - Align
- **Arrangement**
 - Parallel
 - Radial
- **Orientation**
 - Horizontal
 - Vertical

Idiom: scatterplot

- **Express Values**
 - quantitative attributes
 - no keys, only values
 - data
 - 2 quantitative attributes
 - bar plots
 - histogram
 - stacked bar
 - channels
 - axis
 - titles
 - markers
 - legends
 - grid
 - colors
 - transparency
 - size
 - shape
 - color

Idiom: bar chart

- one key, one value
- data
 - values
 - bar, area, line, point
 - legend
 - title
 - axis
 - grid
 - bars
 - markers
 - bars
 - colors
 - transparency
 - size
 - shape
 - color

Some keys

- **express values**
 - separate, order, align regions
 - separate, order, align
 - independent attribute
 - dependent attribute
 - value
- **region**
 - categorical attributes
 - use ordered attribute to order and align regions

Some keys: Categorical regions

- **Separated**
 - ordered
 - unaligned
- **Order**
 - separate
- **Align**
 - separate

Some keys: Numerical values

- **Separate**
 - order
 - align
 - independent attribute
 - dependent attribute
 - value
- **Region**
 - categorical attributes
 - use ordered attribute to order and align regions

Separated, Aligned and Ordered

- **Separated but not ordered or aligned**
- **Limitation**
 - hard to know rank: what's the 4th most? the 7th?
Choosing bars vs line charts
- depends on type of key attrib
 - bar charts if categorical
 - line charts if ordered
- do not use line charts for categorical key attribs
- violates expressiveness principle
- implication of trend too strong
 - does not override semantics!
- "The more male a person, the taller he is!"

Arrange networks and trees
- node-link best for small networks
- weighted edge between nodes
- high information density: requires narrow rectangle
- node-link view in Figure 7.5b.
- matrix views can also show weighted networks, where each link has an as-
 be distinguishable between the largest and the smallest cell size.

VolumeMatrix

List Recursive Subdivision

Parallel

Population maps
- beware!
- absolute vs relative again
- population density vs per capita
- investigate with Ben Jones Tableau Public demo
- http://public.tableau.com/profile/ben.jones storyline=11171947689
- yes, unless you look at per capita (relative) numbers

Population maps thickness

Population maps thickness

Bayesian surprise maps
- use models of expectations to highlight surprising values
- confounds (population) and variance (sparsity)

Bayesian surprise maps

Idioms:

Idioms: pie chart, polar area chart
- pie chart
 - area marks with single channel
 - accuracy: angles less accurate than line length
 - arch height also less accurate than line length
- polar area chart
 - area marks with length channel
 - more direct analog to bar charts
- data
 - 1 using key attrib, 1 quant value attrib
 - task
 - part-to-whole judgements

Idioms: choropleth map
- use given spatial data
 - when central task is understanding spatial relationships
- data
 - geographic geometry
 - table with 1 quant attribute per region
 - encoding
 - use given geometry for area mark boundaries
 - sequential segmented colormap (more later)
 - (geographic heatmap)

Idioms: force-directed placement
- visual encoding
 - link connection marks, node point marks
- considerations
 - spatial position: no meaning directly encoded
 - line to line extension intepretation
 - proximity semantics?
 - sometimes meaningful
 - sometimes arbitrary artifact of layout algorithm
 - increase with length
- tasks
 - explore topology, locate paths, clusters
- scalability
 - node-edge density $< 4N$

Idioms: adjacency matrix view
- data: network
 - transform into some data/encoding to heatmap
 - derived data: from network
 - 1 quant attrib
 - weighted edge between nodes
 - 2 quant attrib: node list x 2
- visual encoding
 - cell shows presence/absence of edge
- scalability
 - IK nodes, 3M edges

Idioms: glyphmaps
- rectilinear good for linear vs nonlinear trends
- radial good for cyclic patterns

Idioms: line chart / dot plot
- one key, one value
- data
 - 2 quant attrib
 - mark points
- line connection marks between them
- channels
 - aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions
- task
 - find trend
 - visual markers emphasize ordering of items along key axes by explicitly showing relationship between one item and the next
- scalability
 - # of key levels, # of value levels

Idioms: heatmap
- two keys, one value
- data
 - 2 quant attrib (gene, experimental condition)
 - 1 quant attrib (expression level)
- markers:
 - areas
 - separated and edge in 2D matrix
 - indexed by 2 categorical attributes
- channels
 - color by quant attrib
 - (gradient diverging colormap)
- task
 - find clusters, outliers
 - scalability
 - # of rows, # of cols of quant levels, # of quant attrib levels

Axis Orientation

Rectilinear

Parallel

Radial

Idioms: adjacency comparison
- adjacency matrix strengths
 - predictability, scalability supports summarizing
 - some topology tasks transivle
- node-link diagram strengths
 - topology understanding path tracing
 - inherent, no training needed
- empirical study
 - node-link best for small networks
 - matrix best for large networks
- fast & slow invariants: topology structure!

Idioms: network diagrams
- node-link diagrams
 - visual encoding
 - visual encoding
 - edge/arc
 - task
 - find clusters, outliers
 - scalability
 - # of key levels, # of value levels

Node-ID Links Diagrams

Adjacency Matrix

Enclosure

Inclusion
How to handle complexity: 1 previous strategy + 3 more

- derive new data to show within view
- change view over time
- facet across multiple views
- reduce items/attributes within single view