Visualization Analysis & Design,

In More Depth

Tamara Munzner

Department of Computer Science

University of British Columbia

Department of Industry, Innovation and Science, Economic and Analytical Services June 23 2017, Canberra Australia

Outline

- Session 1 10-11:30am
 Data Visualization Pitfalls to Avoid
 - Introduction
 - Color
 - Space: 2D vs 3D

- Session 2 12:30-3pm
 Visualization Analysis & Design,
 In More Depth
 - Marks and Channels, Perception
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate

Datasets

ets

Data Types

Tables

Items

Attributes

→ Items → Attributes

→ Data and Dataset Types

Networks &

Items (nodes)

Attributes

Trees

Links

→ Links

Fields

Grids

Positions

Attributes

→ Positions

Geometry

Items

Positions

→ Grids

Clusters,

Items

Sets, Lists

→ Attribute Types

→ Categorical

Attributes

- → Ordered
 - → Ordinal

→ Quantitative

Dataset Types

→ Tables

Items

(rows)

- Link
- → Networks
- → Fields (Continuous)

- Ordering Direction
 - → Sequential
 - .
 - → Diverging
 - → Cyclic

→ Multidimensional Table

Attributes (columns)

Cell containing value

Value in cell

→ Trees

→ Geometry (Spatial)

Attributes

Key 2

Position

- → Dataset Availability
 - → Static

→ Dynamic

Why?

Targets

Analyze

→ Consume

- → Produce
 - → Annotate
- → Record

Search

- {action, target} pairs
 - —discover distribution
 - -compare trends
 - -locate outliers
 - browse topology

	Target known	Target unknown
Location known	·.••• Lookup	*. Browse
Location unknown	₹ Ocate	<: O:> Explore

Query

· • •

All Data

Attributes

.athr.

Network Data

→ Topology

→ Paths

Spatial Data

→ Shape

How?

Encode

→ Express

→ Order

→ Use

→ Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Shape

→ Motion

Direction, Rate, Frequency, ...

Manipulate

Facet

Reduce

→ Change

→ Juxtapose

→ Filter

→ Select

→ Partition

Aggregate

→ Navigate

→ Superimpose

→ Embed

Channels: Rankings

Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)

- expressiveness principle
 - -match channel and data characteristics
- effectiveness principle
 - -encode most important attributes with highest ranked channels

Channels: Expressiveness types and effectiveness rankings

- expressiveness principle
 - -match channel and data characteristics
- effectiveness principle
 - -encode most important attributes with highest ranked channels
 - -spatial position ranks high for both

Accuracy: Fundamental Theory

Steven's Psychophysical Power Law: S= I^N

Accuracy: Vis experiments

Cleveland & McGill's Results

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203-212.]

Discriminability: How many usable steps?

- must be sufficient for number of attribute levels to show
 - -linewidth: few bins

[mappa.mundi.net/maps/maps 0 | 4/telegeography.html]

Separability vs. Integrality

Position+ Hue (Color)

Fully separable

2 groups each

Size
+ Hue (Color)

Some interference

2 groups each

Width
+ Height

Some/significant interference

3 groups total: integral area

Red + Green

Major interference

4 groups total: integral hue

Popout

- find the red dot
 - -how long does it take?
- parallel processing on many individual channels
 - -speed independent of distractor count
 - speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
 - -speed depends on number of distractors

Popout

- many channels: tilt, size, shape, proximity, shadow direction, ...
- but not all! parallel line pairs do not pop out from tilted pairs

Grouping

- containment
- connection

- proximity
 - -same spatial region
- similarity
 - -same values as other categorical channels

Marks as Links

→ Containment

Connection

→ Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
 - -that's why accuracy increases with common frame/scale and alignment
 - -Weber's Law: ratio of increment to background is constant
 - filled rectangles differ in length by 1:9, difficult judgement
 - white rectangles differ in length by 1:2, easy judgement

position along aligned scale

Relative luminance judgements

 perception of luminance is contextual based on contrast with surroundings

Relative color judgements

• color constancy across broad range of illumination conditions

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
 - -Chap 5: Marks and Channels
- On the Theory of Scales of Measurement. Stevens. Science 103:2684 (1946), 677–680.
- Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects.
 Stevens. Wiley, 1975.
- Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531–554.
- Perception in Vision. Healey. http://www.csc.ncsu.edu/faculty/healey/PP
- Visual Thinking for Design. Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann / Academic Press, 2004.

Outline

- Session 1 10-11:30am
 Data Visualization Pitfalls to Avoid
 - Introduction
 - Color
 - Space: 2D vs 3D

- Session 2 12:30-3pm
 Visualization Analysis & Design,
 In More Depth
 - Marks and Channels, Perception
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate

How?

Encode

THE WINE STEEL SERVES SELECTION

→ Arrange

→ Express

→ Order

→ Use

→ Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Shape

→ Motion

Direction, Rate, Frequency, ...

Manipulate

Facet

Reduce

→ Change

Juxtapose

→ Filter

→ Select

→ Partition

Aggregate

→ Navigate

→ Superimpose

→ Embed

Encode tables: Arrange space

Encode

Arrange

→ Express

→ Separate

→ Order

→ Align

Keys and values

- key
 - -independent attribute
 - -used as unique index to look up items
 - -simple tables: I key
 - -multidimensional tables: multiple keys
- value
 - -dependent attribute, value of cell
- classify arrangements by key count
 - -0, 1, 2, many...

→ Multidimensional Table

→ Many Keys
Recursive Subdivision

0 Keys

Idiom: scatterplot

- express values
 - -quantitative attributes
- no keys, only values
 - -data
 - 2 quant attribs
 - -mark: points
 - -channels
 - horiz + vert position
 - -tasks

Express Values

- find trends, outliers, distribution, correlation, clusters
- -scalability
 - hundreds of items

Some keys

Some keys: Categorical regions

→ Separate→ Order→ Align

- regions: contiguous bounded areas distinct from each other
 - -using space to separate (proximity)
 - -following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

→ Many Keys

Recursive Subdivision

Idiom: bar chart

- one key, one value
 - -data
- ne key, one value

 data

 I categ attrib, I quant attrib
 - -mark: lines
 - -channels
 - length to express quant value
 - spatial regions: one per mark
 - separated horizontally, aligned vertically
 - ordered by quant attrib
 - by label (alphabetical), by length attrib (data-driven)
 - -task
 - compare, lookup values
 - -scalability
 - dozens to hundreds of levels for key attrib

Separated and Aligned but not Ordered

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

[Slide courtesy of Ben Jones]

Separated, Aligned and Ordered

[Slide courtesy of Ben Jones]

Separated but not Ordered or Aligned

LIMITATION: Hard to make comparisons

[Slide courtesy of Ben Jones]

Idiom: line chart

- one key, one value
 - -data
 - 2 quant attribs
 - -mark: points
 - line connection marks between them
 - -channels
 - aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions
 - -task
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Idiom: line chart / dot plot

- one key, one value
 - -data
 - 2 quant attribs
 - -mark: points
 - line connection marks between them
 - -channels
 - aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions
 - -task
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next
 - -scalability
 - hundreds of key levels, hundreds of value levels

Choosing bar vs line charts

- depends on type of key attrib
 - -bar charts if categorical
 - -line charts if ordered
- do not use line charts for categorical key attribs
 - -violates expressivenessprinciple
 - implication of trend so strong that it overrides semantics!
 - "The more male a person is, the taller he/she is"

after [Bars and Lines: A Study of Graphic Communication. Zacks and Tversky. Memory and Cognition 27:6 (1999), 1073–1079.]

Chart axes

- labelled axis is critical
- avoid cropping y-axis
 - -include 0 at bottom left
 - -or slope misleads
- dual axes controversial
 - -acceptable if commensurate
 - -beware, very easy to mislead!

Idiom: connected scatterplots

- scatterplot with line connection marks
 - -popular in journalism
 - horiz + vert axes: value attribs
 - line connection marks: temporal order
 - -alternative to dual-axis charts
 - horiz: time
 - vert: two value attribs
- empirical study
 - -engaging, but correlation unclear

Idiom: Indexed line charts

- data: 2 quant attires
 - I key + I value
- derived data: new quant value attrib
 - -index
 - -plot instead of original value
- task: show change over time
 - -principle: normalized, not absolute
- scalability
 - -same as standard line chart

Idiom: Gantt charts

- one key, two (related) values
 - -data
 - I categ attrib, 2 quant attribs
 - -mark: line
 - length: duration
 - -channels
 - horiz position: start time (+end from duration)
 - -task
 - emphasize temporal overlaps, start/end dependencies between items
 - -scalability
 - dozens of key levels
 - hundreds of value levels

https://www.r-bloggers.com/gantt-charts-in-r-using-plotly/

[Performance Analysis and Visualization of Parallel Systems Using SimOS and Rivet: A Case Study. Bosch, Stolte, Stoll, Rosenblum, and Hanrahan. Proc. HPCA 2000.]

Idiom: Slopegraphs

- two values
 - data
 - 2 quant value attribs
 - mark: point + line
 - line connecting mark between pts
 - channels
 - 2 vertical pos: express attrib value
 - task
 - emphasize changes in rank/value
 - scalability
 - hundreds of value levels

Breaking conventions

- presentation vs exploration
 - -engaging/evocative
 - -inverted y axis
 - blood drips down on Poe

Source: https://en.wikipedia.org/wiki/Edgar Allan Poe bibliography

Ben Jones, 7 October 2015

2 Keys

Idiom: heatmap

- two keys, one value
 - -data
 - 2 categ attribs (gene, experimental condition)
 - I quant attrib (expression levels)
 - -marks: area
 - separate and align in 2D matrix
 - indexed by 2 categorical attributes
 - -channels
 - color by quant attrib
 - (ordered diverging colormap)
 - -task
 - find clusters, outliers
 - -scalability
 - IM items, 100s of categ levels, ~10 quant attrib levels

Axis Orientation

→ Rectilinear

→ Parallel

→ Radial

Idioms: scatterplot matrix, parallel coordinates

- scatterplot matrix (SPLOM)
 - -rectilinear axes, point mark
 - -all possible pairs of axes
 - -scalability
 - one dozen attribs
 - dozens to hundreds of items
- parallel coordinates
 - -parallel axes, jagged line representing item
 - -rectilinear axes, item as point
 - axis ordering is major challenge
 - -scalability
 - dozens of attribs
 - hundreds of items

Math	Physics	Dance	Drama
100-			†
90-			
70- 60-			
50			
40-			
30-			
20-			
10-			

Parallel Coordinates

Table

Math	Physics	Dance	Drama
85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

ldioms: radial bar chart, star plot

- radial bar chart
 - -radial axes meet at central ring, line mark
- star plot
 - -radial axes, meet at central point, line mark
- bar chart
 - -rectilinear axes, aligned vertically
- accuracy
 - -length unaligned with radial
 - less accurate than aligned with rectilinear

Radial Orientation: Radar Plots

LIMITATION: Not good when categories aren't cyclic

[Slide courtesy of Ben Jones]

"Radar graphs: Avoid them (99.9% of the time)"

http://www.thefunctionalart.com/2012/11/radar-graphs-avoid-them-999-of-time.html

[Slide courtesy of Ben Jones]

Idioms: pie chart, polar area chart

- pie chart
 - -area marks with angle channel
 - -accuracy: angle/area less accurate than line length
 - arclength also less accurate than line length
- polar area chart
 - -area marks with length channel
 - -more direct analog to bar charts
- data
 - I categ key attrib, I quant value attrib
- task
 - -part-to-whole judgements

Idioms: normalized stacked bar chart

- task
 - -part-to-whole judgements
- normalized stacked bar chart
 - -stacked bar chart, normalized to full vert height
 - -single stacked bar equivalent to full pie
 - high information density: requires narrow rectangle
- pie chart
 - -information density: requires large circle

ldiom: glyphmaps

 rectilinear good for linear vs nonlinear trends

[Glyph-maps for Visually Exploring Temporal Patterns in Climate Data and Models.Wickham, Hofmann, Wickham, and Cook. Environmetrics 23:5 (2012), 382–393.]

Orientation limitations

- rectilinear: scalability wrt #axes
 - 2 axes best
 - 3 problematic
 - more in afternoon
 - 4+ impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits
 - -angles lower precision than lengths
 - -asymmetry between angle and length
 - can be exploited!

[Uncovering Strengths and Weaknesses of Radial Visualizations - an Empirical Approach. Diehl, Beck and Burch. IEEE TVCG (Proc. InfoVis) 16(6):935–942, 2010.]

→ Rectilinear

→ Parallel

→ Radial

Layout Density

dense software overviews

→ Dense

Arrange tables

Express Values

- **→** Separate, Order, Align Regions
 - → Separate

→ Order

→ Align

→ Axis Orientation

→ Rectilinear

→ Parallel

→ Radial

→ Layout Density

→ Space-Filling

→ 1 Key List

→ 2 Keys
Matrix

→ 3 Keys Volume

→ Many Keys
Recursive Subdivision

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series,
 CRC Press, 2014.
 - -Chap 7: Arrange Tables
- Visualizing Data. Cleveland. Hobart Press, 1993.
- A Brief History of Data Visualization. Friendly. 2008. http://www.datavis.ca/milestones

Outline

- Session 1 10-11:30am
 Data Visualization Pitfalls to Avoid
 - Introduction
 - Color
 - Space: 2D vs 3D

- Session 2 12:30-3pm
 Visualization Analysis & Design,
 In More Depth
 - Marks and Channels, Perception
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate

Idiom: choropleth map

- use given spatial data
 - -when central task is understanding spatial relationships
- data
 - -geographic geometry
 - -table with I quant attribute per region
- encoding
 - -use given geometry for area mark boundaries
 - -sequential segmented colormap [more later]

http://bl.ocks.org/mbostock/4060606

Beware: Population maps trickiness!

[https://xkcd.com/1138]

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

Population maps trickiness

- beware!
- absolute vs relative again
 - population density vs per capita
- investigate with Ben Jones Tableau
 Public demo
 - http://public.tableau.com/profile/
 <a href="ben:ben.jones#!/vizhome/PopVsFin/P
 - yes, unless you look at per capita (relative) numbers

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

[https://xkcd.com/1138]

ldiom: Bayesian surprise maps

- use models of expectations to highlight surprising values
- confounds (population) and variance (sparsity)

https://medium.com/@uwdata/surprise-maps-showing-the-unexpected-e92b67398865

Outline

- Session 1 10-11:30am
 Data Visualization Pitfalls to Avoid
 - Introduction
 - Color
 - Space: 2D vs 3D

- Session 2 12:30-3pm
 Visualization Analysis & Design,
 In More Depth
 - Marks and Channels, Perception
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate

Arrange networks and trees

Node-Link Diagrams
Connection Marks

Adjacency Matrix
Derived Table

→ Enclosure

Containment Marks

ldiom: force-directed placement

- visual encoding
 - -link connection marks, node point marks
- considerations
 - -spatial position: no meaning directly encoded
 - left free to minimize crossings
 - -proximity semantics?
 - sometimes meaningful
 - sometimes arbitrary, artifact of layout algorithm
 - tension with length
 - -long edges more visually salient than short
- tasks
 - -explore topology; locate paths, clusters
- scalability
 - -node/edge density E < 4N</p>


```
var width = 960,
   height = 500;

var color = d3.scale.category20();
   http://mbostock.github.com/d3/ex/force.html
var force = d3.layout.force()
```

ldiom: adjacency matrix view

- data: network
 - -transform into same data/encoding as heatmap
- derived data: table from network
 - I quant attrib
 - weighted edge between nodes
 - -2 categ attribs: node list x 2
- visual encoding
 - -cell shows presence/absence of edge
- scalability
 - IK nodes, IM edges

[NodeTrix: a Hybrid Visualization of Social Networks. Henry, Fekete, and McGuffin. IEEE TVCG (Proc. InfoVis) 13(6):1302-1309, 2007.]

[Points of view: Networks. Gehlenborg and Wong. Nature Methods 9:115.]

Connection vs. adjacency comparison

- adjacency matrix strengths
 - -predictability, scalability, supports reordering
 - -some topology tasks trainable
- node-link diagram strengths
 - -topology understanding, path tracing
 - -intuitive, no training needed
- empirical study
 - -node-link best for small networks
 - -matrix best for large networks
 - if tasks don't involve topological structure!

[On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Ghoniem, Fekete, and Castagliola. Information Visualization 4:2 (2005), 114–135.]

http://www.michaelmcguffin.com/courses/vis/patternsInAdjacencyMatrix.png

Idiom: radial node-link tree

- data
 - -tree
- encoding
 - -link connection marks
 - -point node marks
 - -radial axis orientation
 - angular proximity: siblings
 - distance from center: depth in tree
- tasks
 - -understanding topology, following paths
- scalability
 - -IK IOK nodes

Idiom: treemap

- data
 - -tree
 - I quant attrib at leaf nodes
- encoding
 - -area containment marks for hierarchical structure
 - -rectilinear orientation
 - -size encodes quant attrib
- tasks
 - -query attribute at leaf nodes
- scalability
 - IM leaf nodes

http://tulip.labri.fr/Documentation/3_7/userHandbook/html/ch06.html

Link marks: Connection and containment

- marks as links (vs. nodes)
 - -common case in network drawing
 - ID case: connection
 - ex: all node-link diagrams
 - emphasizes topology, path tracing
 - networks and trees
 - -2D case: containment
 - ex: all treemap variants
 - emphasizes attribute values at leaves (size coding)
 - only trees

Node-Link Diagram

Treemap

[Elastic Hierarchies: Combining Treemaps and Node-Link Diagrams. Dong, McGuffin, and Chignell. Proc. InfoVis 2005, p. 57-64.]

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
 - -Chap 9: Arrange Networks and Trees
- Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges. von Landesberger et al. Computer Graphics Forum 30:6 (2011), 1719–1749.
- Simple Algorithms for Network Visualization: A Tutorial. McGuffin. Tsinghua Science and Technology (Special Issue on Visualization and Computer Graphics) 17:4 (2012), 383–398.
- Drawing on Physical Analogies. Brandes. In Drawing Graphs: Methods and Models, LNCS Tutorial, 2025, edited by M. Kaufmann and D. Wagner, LNCS Tutorial, 2025, pp. 71–86. Springer-Verlag, 2001.
- http://www.treevis.net Treevis.net: A Tree Visualization Reference. Schulz. IEEE Computer Graphics and Applications 31:6 (2011), 11–15.
- Perceptual Guidelines for Creating Rectangular Treemaps. Kong, Heer, and Agrawala. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis) 16:6 (2010), 990–998.

Outline

- Session 1 10-11:30am
 Data Visualization Pitfalls to Avoid
 - Introduction
 - Color
 - Space: 2D vs 3D

- Session 2 12:30-3pm
 Visualization Analysis & Design,
 In More Depth
 - Marks and Channels, Perception
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate

How?

Encode

→ Express

→ Order

→ Use

Why?

How?

→ Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Shape

→ Motion

Direction, Rate, Frequency, ...

Manipulate

Facet

Reduce

→ Change

→ Juxtapose

The Maria Station of the State of the State

→ Filter

→ Select

→ Partition

Aggregate

→ Navigate

→ Superimpose

→ Embed

How to handle complexity: I previous strategy + 3 more

Manipulate

Facet

Reduce

Juxtapose

→ Filter

- derive new data to show within view
- change view over time
- facet across multiple views
- reduce items/attributes within single view

→ Select

→ Navigate

Partition

Aggregate

Superimpose

→ Embed

Manipulate

→ Change over Time

→ Select

- **→** Navigate
 - → Item Reduction
 - → Zoom
 Geometric or Semantic

→ Pan/Translate

→ Constrained

- → Attribute Reduction
 - → Slice

→ Cut

→ Project

Change over time

- change any of the other choices
 - -encoding itself
 - -parameters
 - -arrange: rearrange, reorder
 - -aggregation level, what is filtered...
 - -interaction entails change

Idiom: Re-encode

System: **Tableau**

Idiom: Reorder

System: LineUp

data: tables with many attributes

task: compare rankings

[LineUp:Visual Analysis of Multi-Attribute Rankings. Gratzl, Lex, Gehlenborg, Pfister, and Streit. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2013) 19:12 (2013), 2277–2286.]

ldiom: Realign

- stacked bars
 - -easy to compare
 - first segment
 - total bar
- align to different segment
 - -supports flexible comparison

System: LineUp

Idiom: Animated transitions

- smooth interpolation from one state to another
 - -alternative to jump cuts, supports item tracking
 - -best case for animation
 - -staging to reduce cognitive load
- example: animated transitions in statistical data graphics

video: vimeo.com/19278444

ldiom: Animated transitions - visual encoding change

- smooth transition from one state to another
 - -alternative to jump cuts, supports item tracking
 - -best case for animation
 - -staging to reduce cognitive load

Idiom: Animated transition - tree detail

- animated transition
 - network drilldown/rollup

[Collapsible Tree](https://bl.ocks.org/mbostock/4339083)

Idiom: Animated transition - bar detail

- example: hierarchical bar chart
 - -add detail during transition to new level of detail

[Hierarchical Bar Chart](https://bl.ocks.org/mbostock/1283663)

Navigate: Changing item visibility

- change viewpoint
 - -changes which items are visible within view
 - -camera metaphor
 - zoom
 - geometric zoom: familiar semantics
 - semantic zoom: adapt object representation based on available pixels
 - » dramatic change, or more subtle one
 - pan/translate
 - rotate
 - especially in 3D
 - -constrained navigation
 - often with animated transitions
 - often based on selection set

- Navigate
 - → Item Reduction
 - → Zoom
 Geometric or Semantic

→ Pan/Translate

→ Constrained

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series,
 CRC Press, 2014.
 - -Chap 11: Manipulate View
- Animated Transitions in Statistical Data Graphics. Heer and Robertson. IEEE Trans. on Visualization and Computer Graphics (Proc. InfoVis07) 13:6 (2007), 1240–1247.
- Selection: 524,288 Ways to Say "This is Interesting". Wills. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 54–61, 1996.
- Smooth and efficient zooming and panning. van Wijk and Nuij. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 15–22, 2003.
- Starting Simple adding value to static visualisation through simple interaction. Dix and Ellis. Proc. Advanced Visual Interfaces (AVI), pp. 124–134, 1998.

Outline

- Session 1 10-11:30am
 Data Visualization Pitfalls to Avoid
 - Introduction
 - Color
 - Space: 2D vs 3D

- Session 2 12:30-3pm
 Visualization Analysis & Design,
 In More Depth
 - Marks and Channels, Perception
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate

Facet

Juxtapose

Partition

Superimpose

Juxtapose and coordinate views

- → Share Encoding: Same/Different
 - → Linked Highlighting

→ Share Data: All/Subset/None

→ Share Navigation

ldiom: Linked highlighting

System: **EDV**

- see how regions
 contiguous in one view
 are distributed within
 another
 - powerful andpervasive interactionidiom

- encoding: different
 - -multiform
- data: all shared

[Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237–246. IOS Press, 1995.]

ldiom: bird's-eye maps

System: Google Maps

- encoding: same
- data: subset shared
- navigation: shared
 - -bidirectional linking
- differences
 - -viewpoint
 - -(size)
- overview-detail

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1–31.]

Idiom: Small multiples

System: Cerebral

- encoding: same
- data: none shared
 - different attributesfor node colors
 - -(same network layout)
- navigation: shared

[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14:6 (2008), 1253–1260.]

Coordinate views: Design choice interaction

- why juxtapose views?
 - -benefits: eyes vs memory
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 - -costs: display area, 2 views side by side each have only half the area of one view

Why not animation?

- disparate frames and regions: comparison difficult
 - -vs contiguous frames
 - -vs small region
 - –vs coherent motion of group

- safe special case
 - -animated transitions

System: Improvise

- investigate power of multiple views
 - -pushing limits on view count, interaction complexity
 - -how many is ok?
 - open research question
 - -reorderable lists
 - easy lookup
 - useful when linked to other encodings

[Building Highly-Coordinated Visualizations In Improvise. Weaver. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 159–166, 2004.]

Partition into views

- how to divide data between views → Partition into Side-by-Side Views
 - -split into regions by attributes
 - -encodes association between items using spatial proximity
 - -order of splits has major implications for what patterns are visible
- no strict dividing line
 - -view: big/detailed
 - contiguous region in which visually encoded data is shown on the display
 - -glyph: small/iconic
 - object with internal structure that arises from multiple marks

Partitioning: List alignment

- single bar chart with grouped bars
 - -split by state into regions
 - complex glyph within each region showing all ages
 - -compare: easy within state, hard across ages

- small-multiple bar charts
 - -split by age into regions
 - one chart per region
 - –compare: easy within age, harder across states

System: **HIVE**

- split by neighborhood
- then by type
- then time
 - -years as rows
 - -months as columns
- color by price

- neighborhood patterns
 - -where it's expensive
 - –where you pay much more for detached type

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) 15:6 (2009), 977–984.]

- switch order of splits
 - -type then neighborhood
- switch color
 - -by price variation

- type patterns
 - –within specific type, which neighborhoods inconsistent

System: **HIVE**

- different encoding for second-level regions
 - -choropleth maps

System: **HIVE**

- size regions by sale counts
 - -not uniformly
- result: treemap

Superimpose layers

- layer: set of objects spread out over region
 - -each set is visually distinguishable group
 - –extent: whole view

Superimpose Layers

- design choices
 - -how many layers, how to distinguish?

- encode with different, nonoverlapping channels
- two layers achieveable, three with careful design
- -small static set, or dynamic from many possible?

Static visual layering

- foreground layer: roads
 - -hue, size distinguishing main from minor
 - -high luminance contrast from background
- background layer: regions
 - -desaturated colors for water, parks, land areas
- user can selectively focus attention
- "get it right in black and white"
 - -check luminance contrast with greyscale view

[Get it right in black and white. Stone. 2010. http://www.stonesc.com/wordpress/2010/03/get-it-right-in-black-and-white]

Superimposing limits

- few layers, but many lines
 - -up to a few dozen
 - -but not hundreds
- superimpose vs juxtapose: empirical study
 - -superimposed for local, multiple for global
 - -tasks
 - local: maximum, global: slope, discrimination
 - -same screen space for all multiples vs single superimposed

[Graphical Perception of Multiple Time Series.] Javed, McDonnel, and Elmqvist. IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE InfoVis 2010) 16:6 (2010), 927–934.]

CPU utilization over time

Idiom: Trellis plots

- superimpose within same frame
 - -color code by year

Dynamic visual layering

- interactive, from selection
 - -lightweight: click
 - –very lightweight: hover

• ex: I-hop neighbors

[Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Barsky, Gardy, Hancock, and Munzner. Bioinformatics 23:8 (2007), 1040–1042.]

System: Cerebral

Dynamic visual layering

• one-hop neighbour highlighting demos: click vs hover

http://mariandoerk.de/edgemaps/demo/

http://mbostock.github.io/d3/talk/20111116/airports.html

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
 - -Chap 12: Facet Into Multiple Views
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), I-31.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.
- Zooming versus multiple window interfaces: Cognitive costs of visual comparisons. Plumlee and Ware. ACM Trans. on Computer-Human Interaction (ToCHI) 13:2 (2006), 179–209.
- Exploring the Design Space of Composite Visualization. Javed and Elmqvist. Proc. Pacific Visualization Symp. (Pacific Vis), pp. 1–9, 2012.
- Visual Comparison for Information Visualization. Gleicher, Albers, Walker, Jusufi, Hansen, and Roberts. Information Visualization 10:4 (2011), 289–309.
- Guidelines for Using Multiple Views in Information Visualizations. Baldonado, Woodruff, and Kuchinsky. In Proc. ACM Advanced Visual Interfaces (AVI), pp. 110–119, 2000.
- Cross-Filtered Views for Multidimensional Visual Analysis. Weaver. IEEE Trans. Visualization and Computer Graphics 16:2 (Proc. InfoVis 2010), 192–204, 2010.
- Linked Data Views. Wills. In Handbook of Data Visualization, Computational Statistics, edited by Unwin, Chen, and Härdle, pp. 216–241. Springer-Verlag, 2008.
- Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications. Borgo, Kehrer, Chung, Maguire, Laramee, Hauser, Ward, and Chen. In Eurographics State of the Art Reports, pp. 39–63, 2013.

Outline

- Session 1 10-11:30am
 Data Visualization Pitfalls to Avoid
 - Introduction
 - Color
 - Space: 2D vs 3D

- Session 2 12:30-3pm
 Visualization Analysis & Design,
 In More Depth
 - Marks and Channels, Perception
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate

Reduce items and attributes

- reduce/increase: inverses
- filter
 - -pro: straightforward and intuitive
 - to understand and compute
 - -con: out of sight, out of mind
- aggregation
 - -pro: inform about whole set
 - -con: difficult to avoid losing signal
- not mutually exclusive
 - -combine filter, aggregate
 - -combine reduce, change, facet

Reducing Items and Attributes

→ Filter

→ Attributes

- Aggregate
 - → Items

→ Attributes

Reduce

→ Filter

Aggregate

→ Embed

ldiom: dynamic filtering

System: FilmFinder

- item filtering
- browse through tightly coupled interaction
 - -alternative to queries that might return far too many or too few

[Visual information seeking: Tight coupling of dynamic query filters with starfield displays. Ahlberg and Shneiderman. Proc. ACM Conf. on Human Factors in Computing Systems (CHI), pp. 313–317, 1994.]

ldiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
 - -new table: keys are bins, values are counts
- bin size crucial
 - -pattern can change dramatically depending on discretization
 - -opportunity for interaction: control bin size on the fly

Continuous scatterplot

- static item aggregation
- data: table
- derived data: table
 - key attribs x,y for pixels
 - quant attrib: overplot density
- dense space-filling 2D matrix
- color: sequential categorical hue + ordered luminance

[Continuous Scatterplots. Bachthaler and Weiskopf. IEEE TVCG (Proc. Vis 08) 14:6 (2008), 1428–1435. 2008.]

Idiom: scented widgets

- augmented widgets show information scent
 - cues to show whether value in drilling down further vs looking elsewhere
- concise use of space: histogram on slider

[Multivariate Network Exploration and Presentation: From Detail to Overview via Selections and Aggregations. van den Elzen, van Wijk, IEEE TVCG 20(12): 2014 (Proc. InfoVis 2014).]

[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE TVCG (Proc. InfoVis 2007) 13:6 (2007), 1129–1136.]

Scented histogram bisliders: detailed

[ICLIC: Interactive categorization of large image collections. van der Corput and van Wijk. Proc. PacificVis 2016.]

ldiom: cross filtering

System: Crossfilter

- item filtering
- coordinated views/controls combined
 - all scented histogram bisliders update when any ranges change

[http://square.github.io/crossfilter/]

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
 - −5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - -outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]

Spatial aggregation

- MAUP: Modifiable Areal Unit Problem
 - -gerrymandering (manipulating voting district boundaries) is only one example!
 - -zone effects

[http://www.e-education.psu/edu/geog486/I4 p7.html, Fig 4.cg.6]

-scale effects

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series,
 CRC Press, 2014.
 - -Chap 13: Reduce Items and Attributes
- Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines. Elmqvist and Fekete. IEEE Transactions on Visualization and Computer Graphics 16:3 (2010), 439–454.
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1–31.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.

More Information

<u>@tamaramunzner</u>

- this talk http://www.cs.ubc.ca/~tmm/talks.html#vad17can-aft
- book page (including tutorial lecture slides)
 http://www.cs.ubc.ca/~tmm/vadbook
 - -20% promo code for book+ebook combo: HVN17
 - http://www.crcpress.com/product/isbn/9781466508910
 - illustrations: Eamonn Maguire
- papers, videos, software, talks, courses <u>http://www.cs.ubc.ca/group/infovis</u> <u>http://www.cs.ubc.ca/~tmm</u>

Visualization Analysis and Design.