

Outline

- Session l I0-II:30am

Data Visualization Pitfalls to Avoid

- Introduction
- Color
- Space: 2D vs 3D
- Session 2 I2:30-3pm

Visualization Analysis \& Design, In More Depth

- Marks and Channels, Perception
- Arrange Tables
- Arrange Spatial Data
- Arrange Networks
- Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate

What?

Why?

How?
|l| What?

Why？

Θ Analyze
\rightarrow Consume

\rightarrow Produce

\leftrightarrow
Search
－\｛action，target\} pairs
－discover distribution
－compare trends
－locate outliers
－browse topology

	Target known	Target unknown
Location known	．\because Lookup	\cdot－Browse
Location unknown	＜．O．－＞Locate	＜．O．－＞Explore

\rightarrow Identify
\rightarrow Summarize

Θ

All Data

Θ

\rightarrow Extremes illif．Network Data
\rightarrow Topology

$$
\rightarrow \text { Paths }
$$

Θ Spatial Data
\rightarrow Shape

Encode

Θ Map
from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...

- ■ I/̌_ 1))
\rightarrow Shape
$+\quad \square \Delta$
\rightarrow Motion
Direction, Rate, Frequency, ...

Channels: Rankings

Θ Magnitude Channels: Ordered Attributes

Position on common scale	$\stackrel{\longrightarrow}{\longmapsto}$
Position on unaligned scale	$\stackrel{\bullet}{\longmapsto}$
Length (1D size)	- - -
Tilt/angle	$1 / 1$
Area (2D size)	-■ $\square \square$
Depth (3D position)	$\longmapsto \bullet \longmapsto \bullet$
Color luminance	
Color saturation	
Curvature	$1)$)
Volume (3D size)	. 1

Θ Identity Channels: Categorical Attributes
Spatial region

Color hue

Motion

Shape

- expressiveness principle
-match channel and data characteristics
- effectiveness principle
-encode most important attributes with highest ranked channels

Channels: Expressiveness types and effectiveness rankings

Accuracy: Fundamental Theory

Steven's Psychophysical Power Law: $S=I^{N}$

Accuracy:Vis experiments

Cleveland \& McGill's Results

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 2032I2.]

Discriminability: How many usable steps?

- must be sufficient for number of attribute levels to show
- linewidth: few bins

[mappa.mundi.net/maps/maps 014/telegeography.html]

Separability vs. Integrality

Fully separable

2 groups each

Size

+ Hue (Color)

Some interference

2 groups each

Some/significant interference

3 groups total: integral area

Major interference

4 groups total: integral hue

Popout

- find the red dot
-how long does it take?
- parallel processing on many individual channels
-speed independent of distractor count
- speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
- speed depends on number of distractors

Popout

- many channels: tilt, size, shape, proximity, shadow direction, ...
- but not all! parallel line pairs do not pop out from tilted pairs

Grouping

Marks as Links

Θ Containment
Θ Connection

- •••
- containment
- connection
Θ Identity Channels: Categorical Attributes
- proximity
-same spatial region
- similarity
- same values as other categorical channels

Spatial region

Color hue

Motion

Shape
$\square \square \square$

$+\bullet ■-1$

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
-that's why accuracy increases with common frame/scale and alignment
-Weber's Law: ratio of increment to background is constant
- filled rectangles differ in length by I:9, difficult judgement
- white rectangles differ in length by $1: 2$, easy judgement

Relative luminance judgements

- perception of luminance is contextual based on contrast with surroundings

Relative color judgements

- color constancy across broad range of illumination conditions

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
- Chap 5: Marks and Channels
- On the Theory of Scales of Measurement. Stevens. Science 103:2684 (I946), 677-680.
- Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects. Stevens.Wiley, 1975.
- Graphical Perception:Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 53I-554.
- Perception in Vision. Healey. http://www.csc.ncsu.edu/faculty/healey/PP
- Visual Thinking for Design.Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann /Academic Press, 2004.

Outline

- Session l I0-II:30am

Data Visualization Pitfalls to Avoid

- Introduction
- Color
- Space: 2D vs 3D
- Session 2 I2:30-3pm

Visualization Analysis \& Design, In More Depth

- Marks and Channels, Perception
- Arrange Tables
- Arrange Spatial Data
- Arrange Networks
- Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate

How?

Encode tables:Arrange space

Encode

Keys and values

\rightarrow Tables

- key
-independent attribute
-used as unique index to look up items
Attributes (columns)

\rightarrow Multidimensional Table

-0, I, 2, many...Express Values $\rightarrow 1$ Key
$\rightarrow 2$ Keys
$\rightarrow 3$ Keys
Volume
+

\rightarrow Many Keys Recursive Subdivision

0 Keys

Idiom: scatterplot

Θ Express Values

- express values
-quantitative attributes

- no keys, only values -data
- 2 quant attribs
-mark: points
-channels
- horiz + vert position -tasks

- find trends, outliers, distribution, correlation, clusters
-scalability
- hundreds of items

Some keys

Some keys: Categorical regions
\rightarrow Separate

\rightarrow Order

\rightarrow Align

- regions: contiguous bounded areas distinct from each other
-using space to separate (proximity)
-following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions
$\rightarrow \underset{\text { List }}{1 \text { Key }}$

$\rightarrow 2$ Keys
Matrix

$\rightarrow 3$ Keys
Volume

\rightarrow Many Keys
Recursive Subdivision

Idiom: bar chart

- one key, one value -data
- I categ attrib, I quant attrib ${ }^{\text {² }}$ -mark: lines
-channels

- length to express quant value
- spatial regions: one per mark
- separated horizontally, aligned vertically
- ordered by quant attrib
» by label (alphabetical), by length attrib (data-driven)
-task
- compare, lookup values

-scalability

- dozens to hundreds of levels for key attrib

Separated and Aligned but not Ordered

LIMITATION: Hard to know rank. What's the $4^{\text {th }}$ most? The $7^{\text {th }}$?

Separated, Aligned and Ordered

[Slide courtesy of Ben Jones]

Separated but not Ordered or Aligned

LIMITATION: Hard to make comparisons

Idiom: line chart

- one key, one value
-data
- 2 quant attribs
-mark: points
- line connection marks between them -channels

- aligned lengths to express quant value

Year

- separated and ordered by key attrib into horizontal regions
-task
- find trend
- connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Idiom: line chart / dot plot

- one key, one value
-data
- 2 quant attribs
-mark: points
- line connection marks between them -channels

- aligned lengths to express quant value
- separated and ordered by key attrib into horizontal regions
-task
- find trend
- connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next
-scalability
- hundreds of key levels, hundreds of value levels

Choosing bar vs line charts

- depends on type of key attrib
-bar charts if categorical
-line charts if ordered
- do not use line charts for categorical key attribs
-violates expressiveness principle
- implication of trend so strong that it overrides semantics!
- "The more male a person is, the taller he/she is"

Chart axes

- labelled axis is critical
- avoid cropping y-axis
-include 0 at bottom left
-or slope misleads
- dual axes controversial
-acceptable if commensurate
-beware, very easy to mislead!

Services Provided by Planned Parenthood
PEOPLE SERVED FROM 2006 TO 2013

men
\longrightarrow Conce sorevise
torien 5 orver

	2006	2010	
2012			

Idiom: connected scatterplots

- scatterplot with line connection marks
- popular in journalism
-horiz + vert axes: value attribs
-line connection marks:

 temporal order

-alternative to dual-axis charts
- horiz: time
- vert: two value attribs
- empirical study
- engaging, but correlation unclear

Q Dots © Arrows OLabats OGid Add samples

Idiom: Indexed line charts

- data: 2 quant attires
- I key + I value
- derived data: new quant value attrib
-index
- plot instead of original value
- task: show change over time
-principle: normalized, not absolute
- scalability
- same as standard line chart

How does Calfornia make money and how have the sources changed over time? A look at the past 60 years of California tate revenues shows very clearly both the dotcom bubble and the sub-prime mortgage crisis as dips in personal income tax of over $\$ 11 \mathrm{~B}$ from the previous year.

Idiom: Gantt charts

- one key, two (related) values
-data
- I categ attrib, 2 quant attribs
-mark: line
- length: duration
-channels
- horiz position: start time (+end from duration)
-task
- emphasize temporal overlaps, start/end dependencies between items
-scalability
- dozens of key levels
- hundreds of value levels

Idiom: Slopegraphs

- two values
- data
- 2 quant value attribs
- mark: point + line
- line connecting mark between pts - channels
- 2 vertical pos: express attrib value - task
- emphasize changes in rank/value - scalability
- hundreds of value levels

Barclay's Premier League Tables: Comparing 20I2/2013 Starts to 2013/2014 Starts

Breaking conventions

- presentation vs exploration
- engaging/evocative
- inverted y axis
- blood drips down on Poe

2 Keys

Idiom: heatmap

- two keys, one value
-data
- 2 categ attribs (gene, experimental condition)
- I quant attrib (expression levels)
-marks: area
- separate and align in 2D matrix
- indexed by 2 categorical attributes
-channels
- color by quant attrib
- (ordered diverging colormap)
-task

```
-> 1 Key
    List
```


- find clusters, outliers
-scalability
- IM items, I00s of categ levels, ~ 10 quant attrib levels
Θ Axis Orientation

Idioms: scatterplot matrix, parallel coordinates

- scatterplot matrix (SPLOM)
-rectilinear axes, point mark
-all possible pairs of axes
-scalability
- one dozen attribs
- dozens to hundreds of items
- parallel coordinates

Scatterplot Matrix

-parallel axes, jagged line representing item
-rectilinear axes, item as point

- axis ordering is major challenge
-scalability
- dozens of attribs

85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

Table

- hundreds of items

Idioms: radial bar chart, star plot

- radial bar chart
-radial axes meet at central ring, line mark
- star plot
-radial axes, meet at central point, line mark
- bar chart
-rectilinear axes, aligned vertically
- accuracy
-length unaligned with radial
- less accurate than aligned with rectilinear

Radial Orientation: Radar Plots

\mp Violent Disorder

- Public Disorder
-_Missile Throwing
\#Racist or indecent Chanting
*-Pitch incursion
\rightarrow Alcohol offences
-TTiket Touting
-Possession of offensive Weapon
-Use or Possession of fireworks or Flares
$\#$ Breach of Banning Order
- O-Offences against Property

LIMITATION: Not good when categories aren't cyclic
"Radar graphs: Avoid them (99.9\% of the time)"

http://www.thefunctionalart.com/2012/I I/radar-graphs-avoid-them-999-of-time.html

Idioms: pie chart, polar area chart

- pie chart
-area marks with angle channel
-accuracy: angle/area less accurate than line length

- arclength also less accurate than line length
- polar area chart
-area marks with length channel
-more direct analog to bar charts

- data
- I categ key attrib, I quant value attrib
- task

-part-to-whole judgements

Idioms: normalized stacked bar chart

- task
-part-to-whole judgements
- normalized stacked bar chart
-stacked bar chart, normalized to full vert height -single stacked bar equivalent to full pie
- high information density: requires narrow rectangle
- pie chart
-information density: requires large circle

Idiom: glyphmaps

- rectilinear good for linear vs nonlinear trends

- radial good for cyclic patterns
Θ Axis Orientation

$$
\begin{gathered}
\rightarrow \text { Parallel } \\
\uparrow \uparrow \uparrow
\end{gathered}
$$

[Glyph-maps for Visually Exploring Temporal Patterns in Climate Data and Models. Wickham, Hofmann,Wickham, and Cook. Environmetrics 23:5 (20I2), 382-393.]

Orientation limitations

- rectilinear: scalability wrt \#axes
- 2 axes best
- 3 problematic
-more in afternoon
- 4+ impossible

Θ Axis Orientation

\rightarrow Rectilinear

\rightarrow Parallel

\rightarrow Radial

Θ Layout Density
\rightarrow Dense |"

dense software overviews

[Visualization of test information to assist fault localization. Jones, Harrold, Stasko. Proc. ICSE 2002, p 467-477.]

Arrange tables

Θ Express Values

Θ Separate, Order, Align Regions
\rightarrow Separate
\rightarrow Order

\rightarrow Align

$$
\rightarrow 1 \mathrm{Key}
$$

$\rightarrow 2$ Keys
List
\square Matrix
\#
$\rightarrow 3$ Keys
Volume

\rightarrow Many Keys
Recursive Subdivision

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
-Chap 7:Arrange Tables
- Visualizing Data. Cleveland. Hobart Press, 1993.
- A Brief History of Data Visualization. Friendly. 2008. http://www.datavis.ca/milestones

Outline

- Session l I0-II:30am

Data Visualization Pitfalls to Avoid

- Introduction
- Color
- Space: 2D vs 3D
- Session 2 I2:30-3pm

Visualization Analysis \& Design, In More Depth

- Marks and Channels, Perception
- Arrange Tables
- Arrange Spatial Data
- Arrange Networks
- Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate

Idiom: choropleth map

- use given spatial data
-when central task is understanding spatial relationships
- data
-geographic geometry
-table with I quant attribute per region
- encoding
-use given geometry for area mark boundaries
-sequential segmented colormap [more later]

http://bl.ocks.org/mbostock/4060606

Beware: Population maps trickiness!

PET PEEVE \#208:
GEOGRAPHIC PROFIE MAPS WHICH ARE
BASICPILYY JUST POPULATION MAPS

Population maps trickiness

- beware!
- absolute vs relative again
- population density vs per capita
- investigate with Ben Jones Tableau Public demo
- http://public.tableau.com/profile/ ben.jones\#!/vizhome/PopVsFin/PopVsFin Are Maps of Financial Variables just Population Maps?
- yes, unless you look at per capita (relative) numbers

PET PEEVE \#208:
GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS
[https://xkcd.com/ I | 38]

Idiom: Bayesian surprise maps

- use models of expectations to highlight surprising values
- confounds (population) and variance (sparsity)

https://medium.com/@uwdata/surprise-maps-showing-the-unexpected-e92b67398865

Outline

- Session l I0-II:30am

Data Visualization Pitfalls to Avoid

- Introduction
- Color
- Space: 2D vs 3D
- Session 2 I2:30-3pm

Visualization Analysis \& Design, In More Depth

- Marks and Channels, Perception
- Arrange Tables
- Arrange Spatial Data
- Arrange Networks
- Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate

Arrange networks and trees

Θ Node-Link Diagrams
Connection Marks
\checkmark NETWORKS \downarrow TREES

Θ Adjacency Matrix
Derived Table
\checkmark NETWORKS \downarrow TREES

Θ Enclosure
Containment Marks

Idiom: force-directed placement

- visual encoding
-link connection marks, node point marks
- considerations
-spatial position: no meaning directly encoded
- left free to minimize crossings
-proximity semantics?
- sometimes meaningful
- sometimes arbitrary, artifact of layout algorithm

- tension with length
- long edges more visually salient than short
- tasks
-explore topology; locate paths, clusters
- scalability
-node/edge density E $<4 \mathrm{~N}$

Idiom: adjacency matrix view

- data: network
-transform into same data/encoding as heatmap
- derived data: table from network

[NodeTrix: a Hybrid Visualization of Social Networks. Henry, Fekete, and McGuffin. IEEE TVCG (Proc. InfoVis) 13(6):I302-I309, 2007.]
-I quant attrib
- weighted edge between nodes
-2 categ attribs: node list $\times 2$
- visual encoding
-cell shows presence/absence of edge
- scalability
- IK nodes, IM edges

[Points of view: Networks. Gehlenborg and Wong. Nature Methods 9:I I5.]

Connection vs. adjacency comparison

- adjacency matrix strengths
-predictability, scalability, supports reordering -some topology tasks trainable
- node-link diagram strengths
-topology understanding, path tracing
-intuitive, no training needed

http://www.michaelmcguffin.com/courses/vis/patterns/nAdjacencyMatrix.png
- empirical study
-node-link best for small networks
-matrix best for large networks
- if tasks don't involve topological structure!
[On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis.
Ghoniem, Fekete, and Castagliola. Information Visualization 4:2
(2005), I I 4-I35.]

Idiom: radial node-link tree

- data
-tree
- encoding
-link connection marks
-point node marks
-radial axis orientation
- angular proximity: siblings
- distance from center: depth in tree
- tasks
-understanding topology, following paths
- scalability

-IK - IOK nodes

Idiom: treemap

- data
-tree
- I quant attrib at leaf nodes
- encoding
-area containment marks for hierarchical structure
-rectilinear orientation
-size encodes quant attrib
- tasks
-query attribute at leaf nodes
- scalability
- IM leaf nodes

Link marks: Connection and containment

- marks as links (vs. nodes)
-common case in network drawing
- ID case: connection
- ex: all node-link diagrams
- emphasizes topology, path tracing
- networks and trees
-2D case: containment
- ex: all treemap variants
- emphasizes attribute values at leaves (size coding)
- only trees
Θ Containment Θ Connection

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
-Chap 9:Arrange Networks and Trees
- Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges. von Landesberger et al. Computer Graphics Forum 30:6 (201I), I7I9-I749.
- Simple Algorithms for Network Visualization:A Tutorial. McGuffin.Tsinghua Science and Technology (Special Issue on Visualization and Computer Graphics) I7:4 (2012), 383-398.
- Drawing on Physical Analogies. Brandes. In Drawing Graphs: Methods and Models, LNCS Tutorial, 2025, edited by M. Kaufmann and D.Wagner, LNCS Tutorial, 2025, pp. 7I-86. Springer-Verlag, 200I.
- http://www.treevis.net Treevis.net:A Tree Visualization Reference. Schulz. IEEE Computer Graphics and Applications 3I:6 (20II), II-I 5 .
- Perceptual Guidelines for Creating Rectangular Treemaps. Kong, Heer, and Agrawala. IEEE Trans.Visualization and Computer Graphics (Proc. InfoVis) I6:6 (20I0), 990-998.

Outline

- Session l I0-II:30am

Data Visualization Pitfalls to Avoid

- Introduction
- Color
- Space: 2D vs 3D
- Session 2 I2:30-3pm

Visualization Analysis \& Design, In More Depth

- Marks and Channels, Perception
- Arrange Tables
- Arrange Spatial Data
- Arrange Networks
- Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate

How?

Encode

Θ Map
from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...

- ■ I
\rightarrow Shape
$+\quad \square \Delta$
\rightarrow Motion
Direction, Rate, Frequency, ...
What?

Why?

How?

How to handle complexity: I previous strategy + 3 more
\rightarrow Derive

Θ Change

Θ Select

Θ Partition

Θ Superimpose

Reduce
Θ Filter

Θ Aggregate

Θ Embed

Manipulate

Θ Change over Time

Θ Select

Θ Navigate
\rightarrow Item Reduction
\rightarrow Zoom Geometric or Semantic

\rightarrow Pan/Translate

\rightarrow Constrained

\rightarrow Attribute Reduction
\rightarrow Slice

\rightarrow Cut

\rightarrow Project

Change over time

- change any of the other choices
-encoding itself
-parameters
-arrange: rearrange, reorder
-aggregation level, what is filtered...
-interaction entails change

Idiom: Re-encode

System: Tableau

Idiom: Reorder

System: LineUp

- data: tables with many attributes
- task: compare rankings

[LineUp:Visual Analysis of Multi-Attribute Rankings. Gratzl, Lex, Gehlenborg, Pfister, and Streit. IEEE Trans.Visualization and Computer Graphics (Proc. InfoVis 2013) I9:I2 (2013), 2277-2286.]

Idiom: Realign

System: LineUp

- stacked bars
- easy to compare
- first segment
- total bar
- align to different segment
-supports flexible comparison

Idiom: Animated transitions

- smooth interpolation from one state to another
-alternative to jump cuts, supports item tracking
-best case for animation
-staging to reduce cognitive load
- example: animated transitions in statistical data graphics

video: vimeo.com/l9278444

Idiom: Animated transitions - visual encoding change

- smooth transition from one state to another
-alternative to jump cuts, supports item tracking
-best case for animation
-staging to reduce cognitive load

Idiom: Animated transition - tree detail

- animated transition
-network drilldown/rollup

			BetweennessCentralty LinkDistance MaxFlomMinCut ShortestPaths SpanningTree

[Collapsible Tree](https://bl.ocks.org/mbostock/4339083)

Idiom: Animated transition - bar detail

- example: hierarchical bar chart
-add detail during transition to new level of detail

[Hierarchical Bar Chart](https://bl.ocks.org/mbostock/I283663)

Navigate: Changing item visibility

- change viewpoint
-changes which items are visible within view
-camera metaphor
- zoom
- geometric zoom: familiar semantics
- semantic zoom: adapt object representation based on available pixels
" dramatic change, or more subtle one
- pan/translate
- rotate
- especially in 3D
-constrained navigation
- often with animated transitions
- often based on selection set
Θ Navigate
\rightarrow Item Reduction
\rightarrow Zoom
Geometric or Semantic

\rightarrow Pan/Translate

\rightarrow Constrained

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
-Chap II:Manipulate View
- Animated Transitions in Statistical Data Graphics. Heer and Robertson. IEEE Trans. on Visualization and Computer Graphics (Proc. InfoVis07) I3:6 (2007), I240I247.
- Selection: 524,288 Ways to Say "This is Interesting". Wills. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 54-6I, I996.
- Smooth and efficient zooming and panning. van Wijk and Nuij. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I5-22, 2003.
- Starting Simple - adding value to static visualisation through simple interaction. Dix and Ellis. Proc.AdvancedVisual Interfaces (AVI), pp. I24-I34, I998.

Outline

- Session l I0-II:30am

Data Visualization Pitfalls to Avoid

- Introduction
- Color
- Space: 2D vs 3D
- Session 2 I2:30-3pm

Visualization Analysis \& Design, In More Depth

- Marks and Channels, Perception
- Arrange Tables
- Arrange Spatial Data
- Arrange Networks
- Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate

Facet
\rightarrow Juxtapose

Partition
Superimpose

Juxtapose and coordinate views

\rightarrow Share Encoding: Same/Different
\rightarrow Linked Highlighting

\rightarrow Share Data: All/Subset/None

\rightarrow Share Navigation

Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
-powerful and pervasive interaction idiom
- encoding: different
-multiform
- data: all shared

[Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237-246. IOS Press, I995.]

Idiom: bird's-eye maps

System: Google Maps

- encoding: same
- data: subset shared
- navigation: shared -bidirectional linking
- differences
-viewpoint
-(size)
- overview-detail

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.]

Idiom: Small multiples

- encoding: same
- data: none shared
-different attributes for node colors
-(same network layout)
- navigation: shared

[Cerebral:Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans.

Coordinate views: Design choice interaction

		Data		
		All	Subset	None
	Same	Redundant	Overview/ Detail	Small Multiples
	Different	Multiform	Multiform, Overview/ Detail	No Linkage

- why juxtapose views?
-benefits: eyes vs memory
- lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
-costs: display area, 2 views side by side each have only half the area of one view

Why not animation?

- disparate frames and regions: comparison difficult
-vs contiguous frames
-vs small region
-vs coherent motion of group
- safe special case
-animated transitions

System: Improvise

- investigate power of multiple views -pushing limits on view count, interaction complexity -how many is ok?
- open research question
-reorderable lists
- easy lookup
- useful when linked to other encodings

[Building Highly-Coordinated Visualizations In Improvise.Weaver. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I59-I66, 2004.]

Partition into views

- how to divide data between views Θ Partition into Side-by-Side Views
-split into regions by attributes
-encodes association between items using spatial proximity
-order of splits has major implications for what patterns are visible
- no strict dividing line
-view: big/detailed
- contiguous region in which visually encoded data is shown on the display
-glyph: small/iconic
- object with internal structure that arises
from multiple marks

Partitioning: List alignment

- single bar chart with grouped bars
-split by state into regions
- complex glyph within each region showing all ages
-compare: easy within state, hard across ages

- small-multiple bar charts
-split by age into regions
- one chart per region
-compare: easy within age, harder across states

Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- then time
- years as rows
-months as columns
- color by price
- neighborhood patterns
-where it's expensive
- where you pay much more for detached type

Partitioning: Recursive subdivision

System: HIVE

- switch order of splits
-type then neighborhood
- switch color
-by price variation
- type patterns
-within specific type, which neighborhoods inconsistent

Partitioning: Recursive subdivision

System: HIVE

- different encoding for second-level regions
-choropleth maps

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) I5:6 (2009), 977-984.]

Partitioning: Recursive subdivision

System: HIVE

- size regions by sale counts
-not uniformly
- result: treemap

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) I5:6 (2009), 977-984.]

Superimpose layers

- layer: set of objects spread out over region
-each set is visually distinguishable group
-extent: whole view
Θ Superimpose Layers
- design choices
-how many layers, how to distinguish?

- encode with different, nonoverlapping channels
- two layers achieveable, three with careful design
-small static set, or dynamic from many possible?

Static visual layering

- foreground layer: roads
-hue, size distinguishing main from minor -high luminance contrast from background
- background layer: regions
-desaturated colors for water, parks, land areas
- user can selectively focus attention
- "get it right in black and white" -check luminance contrast with greyscale view
[Get it right in black and white. Stone. 2010. http://www.stonesc.com/wordpress/2010/03/get-it-right-in-black-and-white]

Superimposing limits

- few layers, but many lines
-up to a few dozen
-but not hundreds
- superimpose vs juxtapose: empirical study
-superimposed for local, multiple for global
-tasks
- local: maximum, global: slope, discrimination
-same screen space for all multiples vs single superimposed

Idiom: Trellis plots

- superimpose within same frame
- color code by year

Dynamic visual layering

- interactive, from selection
-lightweight: click
-very lightweight: hover
- ex: l-hop neighbors
[Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Barsky, Gardy, Hancock, and Munzner. Bioinformatics 23:8 (2007), 1040-1042.]

Dynamic visual layering

- one-hop neighbour highlighting demos: click vs hover

http://mariandoerk.de/edgemaps/demo/

http://mbostock.github.io/d3/talk/20| | | | |6/airports.html

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
-Chap 12: Facet Into Multiple Views
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.
- Zooming versus multiple window interfaces: Cognitive costs of visual comparisons. Plumlee and Ware. ACM Trans. on ComputerHuman Interaction (ToCHI) I3:2 (2006), I79-209.
- Exploring the Design Space of Composite Visualization. Javed and Elmqvist. Proc. Pacific Visualization Symp. (PacificVis), pp. I-9, 20 I2.
- Visual Comparison for Information Visualization. Gleicher, Albers,Walker, Jusufi, Hansen, and Roberts. Information Visualization I0:4 (201I), 289-309.
- Guidelines for Using Multiple Views in Information Visualizations. Baldonado,Woodruff, and Kuchinsky. In Proc.ACM Advanced Visual Interfaces (AVI), pp. IIO-II9, 2000.
- Cross-Filtered Views for Multidimensional Visual Analysis. Weaver. IEEE Trans.Visualization and Computer Graphics 16:2 (Proc. InfoVis 20I0), I92-204, 2010.
- Linked Data Views. Wills. In Handbook of Data Visualization, Computational Statistics, edited by Unwin, Chen, and Härdle, pp. 2I624I. Springer-Verlag, 2008.
- Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications. Borgo, Kehrer, Chung, Maguire, Laramee, Hauser, Ward, and Chen. In Eurographics State of the Art Reports, pp. 39-63, 2013.

Outline

- Session l I0-II:30am

Data Visualization Pitfalls to Avoid

- Introduction
- Color
- Space: 2D vs 3D
- Session 2 I2:30-3pm

Visualization Analysis \& Design, In More Depth

- Marks and Channels, Perception
- Arrange Tables
- Arrange Spatial Data
- Arrange Networks
- Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate

Reduce items and attributes

- reduce/increase: inverses
- filter
-pro: straightforward and intuitive
- to understand and compute
-con: out of sight, out of mind
- aggregation
-pro: inform about whole set -con: difficult to avoid losing signal
- not mutually exclusive
-combine filter, aggregate
-combine reduce, change, facet

Reducing Items and Attributes

Reduce

Θ Filter
\rightarrow Items

\rightarrow Attributes

Θ Aggregate
\rightarrow Items

\rightarrow Attributes

Θ Filter

\oplus Aggregate

\oplus Embed

Idiom: dynamic filtering

System: FilmFinder

- item filtering
- browse through tightly coupled interaction
-alternative to queries that might return far too many or too few

[Visual information seeking:Tight coupling of dynamic query filters with starfield displays. Ahlberg and Shneiderman.
Proc.ACM Conf. on Human Factors in Computing Systems (CHI), pp. 313-3I7, 1994.]

Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
-new table: keys are bins, values are counts
- bin size crucial

-pattern can change dramatically depending on discretization
-opportunity for interaction: control bin size on the fly

Continuous scatterplot

- static item aggregation
- data: table
- derived data: table
- key attribs x,y for pixels
- quant attrib: overplot density
- dense space-filling 2D matrix

- color: sequential categorical hue + ordered luminance
[Contmodusrscatatplots. Bachthaler and Weiskopf. IEEE TVCG (Proc.Vis 08) I4:6 (2008), I428-I 435. 2008.]

Idiom: scented widgets

- augmented widgets show information scent
- cues to show whether value in drilling down further vs looking elsewhere
- concise use of space: histogram on slider

[Multivariate Network Exploration and Presentation: From Detail to Overview via Selections and Aggregations. van den Elzen, van Wijk, IEEE TVCG 20(I2): 2014 (Proc. InfoVis 2014).]

In..|llun...........
 |l|l|-\#ofvists |||l| reeency

[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE TVCG (Proc. InfoVis 2007) I 3:6 (2007), I | 29-I I 36.]

Scented histogram bisliders: detailed

Idiom: cross filtering

System: Crossfilter

- item filtering
- coordinated views/controls combined
- all scented histogram bisliders update when any ranges change

[http://square.github.io/crossfilter/]

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
-5 quant attribs
- median: central line
- lower and upper quartile: boxes
- lower upper fences: whiskers
- values beyond which items are outliers

-outliers beyond fence cutoffs explicitly shown
[40 years of boxplots.Wickham and Stryjewski. 20I2. had.co.nz]

Spatial aggregation

- MAUP: Modifiable Areal Unit Problem
-gerrymandering (manipulating voting district boundaries) is only one example! -zone effects

[http://www.e-education.psu/edu/geog486/14 p7.html, Fig 4.cg.6]
-scale effects

https://blog.cartographica.com/blog/201 |/5/19/ the-modifiable-areal-unit-problem-in-gis.html

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
-Chap I 3: Reduce Items and Attributes
- Hierarchical Aggregation for Information Visualization: Overview,Techniques and Design Guidelines. Elmqvist and Fekete. IEEE Transactions on Visualization and Computer Graphics 16:3 (2010), 439-454.
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.

More Information

- this talk
http://www.cs.ubc.ca/~tmm/talks.html\#vadI7can-aft
- book page (including tutorial lecture slides) http://www.cs.ubc.ca/~tmm/vadbook
- 20\% promo code for book+ebook combo: HVNI7
- http://www.crcpress.com/product/isbn/978I466508910
-illustrations: Eamonn Maguire
- papers, videos, software, talks, courses http://www.cs.ubc.ca/group/infovis

