Visualization Analysis \& Design

Tamara Munzner

Department of Computer Science University of British Columbia

University of Washington, Data Science Seminar
September 30 2015, Seattle WA

Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...

Why have a human in the loop?

Computer-based xisualization systems provide visual representations o datasets designed to hel people arry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- don't need vis when fully automatic solution exists and is trusted
- many analysis problems ill-specified
- don't know exactly what questions to ask in advance
- possibilities
- long-term use for end users (e.g. exploratory analysis of scientific data)
- presentation of known results
- stepping stone to better understanding of requirements before developing models
- help developers of automatic solution refine/debug, determine parameters
-help end users of automatic solutions verify, build trust

Why use an external representation?

Computer-based visualization systems provid visual representations f datasets designed to help people carry out tasks more efrectively.

- external representation: replace cognition with perception

Why represent all the data?

Computer-based visualization systems provide visua representations of datasets designed to help people carry out tasks more effectivery.

- summaries lose information, details matter
- confirm expected and find unexpected patterns
- assess validity of statistical model

Anscombe's Quartet

Identical statistics	
x mean	9
x variance	10
y mean	8
y variance	4
x/y correlation	1

Analysis framework: Four levels, three questions

- domain situation
- abstraction
[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG I5(6):92I-928, 2009 (Proc. InfoVis 2009).]
- what is shown? data abstraction
- often don't just draw what you're given: transform to new form
- why is the user looking at it? task abstraction
- idiom

- visual encoding idiom: how to draw
- interaction idiom: how to manipulate
[A Multi-Level Typology of Abstract Visualization Tasks
- algorithm
- efficient computation

Validation methods from different fields for each level

- mismatch: cannot show idiom good with system timings
- mismatch: cannot show abstraction good with lab study

Why analyze?

- imposes a structure on huge design space

> - scaffold to help you think systematically about choices
> - analyzing existing as stepping stone to designing new

Θ Tree

Why?
Θ Actions
How?

TreeJuxtaposer

[TreeJuxtaposer: Scalable Tree Comparison Using Focus +Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453-462, 2003.]
\rightarrow Present \rightarrow Locate \rightarrow Identify

Θ SpaceTree
\rightarrow Encode \rightarrow Navigate \rightarrow Select \rightarrow Filter $\quad \rightarrow$ Aggregate
Θ TreeJuxtaposer
\rightarrow Encode \rightarrow Navigate \rightarrow Select \rightarrow Arrange
Θ Targets
\rightarrow Path between two nodes

[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57-64.] rical \square

What?

Why?

How?

What?

Types: Datasets and data

Θ Dataset Types

\rightarrow Tables
\rightarrow Networks

Θ Attribute Types
\rightarrow Categorical

\rightarrow Spatial
\rightarrow Fields (Continuous) $\quad \rightarrow$ Geometry (Spatial)

\rightarrow Ordered

$$
\rightarrow \text { Ordinal }
$$

\rightarrow Quantitative

Why?

What?

How?

- \{action, target\} pairs
- discover distribution
- compare trends
- locate outliers
- browse topology

Analyze
\rightarrow Consume

\rightarrow Produce

Θ Search

	Target known	Target unknown
Location known	\bullet - Lookup	- \odot Browse
Location unknown	<.O.> Locate	< ${ }^{\text {O-P.> Explore }}$

\rightarrow Query
\rightarrow Identify

\rightarrow Summarize

\leftrightarrow All Data

\leftrightarrow

\rightarrow Extremes illı.
Θ Network Data
\rightarrow Topology

\rightarrow Paths
Θ Spatial Data
\rightarrow Shape

Actions I:Analyze

- consume
-discover vs present
- classic split
- aka explore vs explain
-enjoy
- newcomer
- aka casual, social
- produce
-annotate, record
- derive
- crucial design choice
Θ Analyze
\rightarrow Consume
\rightarrow Discover

\rightarrow Produce
\rightarrow Annotate

$$
\rightarrow \text { Present } \quad \rightarrow \text { Enjoy }
$$

$$
\rightarrow \text { Record } \quad \rightarrow \text { Derive }
$$

$\rightarrow 8$

Actions II: Search

- what does user know?
- target, location
Θ Search

	Target known	Target unknown
Location known	- . . Lookup	\cdots Browse
Location unknown	< ${ }^{\circ} \mathrm{O} \cdot>$ Locate	* © - ${ }^{\text {- }}$ - Explore

Actions III: Query

- what does user know?
- target, location
- how much of the data matters?
- one, some, all
Θ Search

	Target known	Target unknown
Location known	- - Lookup	- \bigcirc Browse
Location unknown	< ${ }^{\circ}$-> Locate	* O.> Explore

Θ Query

$$
\rightarrow \text { Identify } \quad \rightarrow \text { Compare } \quad \rightarrow \text { Summarize }
$$

- analyze, search, query
-independent choices for each

Targets

Θ All Data

Θ Attributes

Θ Network Data
\rightarrow Topology

Θ Spatial Data
\rightarrow Shape

How?

Encode

Θ Map

from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...

- ■ I $/$ _ ()))
\rightarrow Shape
$+\quad \square \Delta$
\rightarrow Motion
Direction, Rate, Frequency, ...

Manipulate

Facet
Θ Juxtapose

Θ Select

Θ Navigate
$\because \because>$
Θ Superimpose

Reduce

Θ Filter

Θ Aggregate

Θ Embed
Enn

How to encode: Arrange space, map channels

Encode

Encoding visually

- analyze idiom structure

Definitions: Marks and channels

- marks
Θ Points
Θ Lines
\rightarrow Areas
- geometric primitives
- channels
- control appearance of marks
Shape
Θ Tilt
- 米
1 ■

Θ Size
\rightarrow Length
-
- - \qquad
\rightarrow Volume
\square

Encoding visually with marks and channels

- analyze idiom structure
-as combination of marks and channels

1:
vertical position

2 :
vertical position horizontal position

$3:$
vertical position horizontal position color hue
mark: point mark: point

4: vertical position
horizontal position color hue size (area)
mark: point

Channels

Channels: Matching Types

Θ Magnitude Channels: Ordered Attributes

Θ Identity Channels: Categorical Attributes

- expressiveness principle - match channel and data characteristics

Channels: Rankings

Θ Magnitude Channels: Ordered Attributes

Position on common scale	$\longmapsto-\longrightarrow$
Position on unaligned scale	$\stackrel{-}{\longmapsto}$
Length (1D size)	- - -
Tilt/angle	$1 / 2$
Area (2D size)	- ■
Depth (3D position)	$\longmapsto \bullet \longmapsto \bullet$
Color luminance	
Color saturation	
Curvature	$1)$)
Volume (3D size)	- 1

Θ Identity Channels: Categorical Attributes
Spatial region

Color hue

Motion

Shape

- expressiveness principle
- match channel and data characteristics
- effectiveness principle
- encode most important attributes with highest ranked channels

How?

Encode

Θ Map

from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...

- ■ I / _ \|))
\rightarrow Shape
$+\quad \square \Delta$
\rightarrow Motion
Direction, Rate, Frequency, ...

How to handle complexity: 3 more strategies $+I$ previous

Manipulate	Facet	Reduce	\rightarrow Derive
Change $\because \because \circ \odot \square!$	Θ Juxtapose ... $\bullet^{\bullet} \quad \because \cdot$.	Filter 	
Θ Select	Partition	Θ Aggregate \qquad	- change view over time - facet across multiple views
Navigate $<\because$ 〉	Superimpose	Embed EMn	- reduce items/attributes within single view - derive new data to show within view

\qquad
Θ Filter

Θ Aggregate

\rightarrow Derive

Θ Select

Θ Partition

Θ Navigate

Θ Superimpose

Θ Embed

- change over time
- most obvious \& flexible of the 4 strategies

Idiom: Animated transitions

- smooth transition from one state to another
-alternative to jump cuts
- support for item tracking when amount of change is limited
- example: multilevel matrix views
- scope of what is shown narrows down
- middle block stretches to fill space, additional structure appears within
- other blocks squish down to increasingly aggregated representations

[Using Multilevel Call Matrices in Large Software Projects. van Ham. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 227-232, 2003.]

How to handle complexity: 3 more strategies

+ I previous

\rightarrow Derive

Θ Aggregate

Θ Embed

- facet data across multiple views

Facet

Θ Juxtapose

Θ Partition

Θ Superimpose

Θ Coordinate Multiple Side By Side Views
\rightarrow Share Encoding: Same/Different
\rightarrow Linked Highlighting

\rightarrow Share Data: All/Subset/None

\rightarrow Share Navigation

Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
- powerful and pervasive interaction idiom
- encoding: different
- multiform
- data: all shared

[Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237-246. IOS Press, I995.]

Idiom: bird's-eye maps

System: Google Maps

- encoding: same
- data: subset shared
- navigation: shared - bidirectional linking
- differences
- viewpoint
- (size)
- overview-detail

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.]

Idiom: Small multiples

System: Cerebral

- encoding: same
- data: none shared
- different attributes for node colors
-(same network layout)
- navigation: shared

[Cerebral:Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) I4:6 (2008), I253-I 260.$]$

Coordinate views: Design choice interaction

		Data		
		All	Subset	None
	Same	Redundant	Overview/ Detail	Small Multiples
	Different	Multiform	Multiform, Overview/ Detail	No Linkage

- why juxtapose views?
-benefits: eyes vs memory
- lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
- costs: display area, 2 views side by side each have only half the area of one view

Partition into views

- how to divide data between views
- encodes association between items using spatial proximity
- major implications for what patterns are visible
- split according to attributes
- design choices
-how many splits
- all the way down: one mark per region?
- stop earlier, for more complex structure within region?
- order in which attribs used to split
-how many views
Θ Partition into Side-by-Side Views

Partitioning: List alignment

- single bar chart with grouped bars
- split by state into regions
- complex glyph within each region showing all ages
- compare: easy within state, hard across ages
- small-multiple bar charts
- split by age into regions
- one chart per region
- compare: easy within age, harder across states

Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- then time
- years as rows
-months as columns
- color by price
- neighborhood patterns
- where it's expensive
- where you pay much more for detached type

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) I5:6 (2009), 977-984.]

Partitioning: Recursive subdivision

System: HIVE

- switch order of splits
-type then neighborhood
- switch color
-by price variation
- type patterns
- within specific type, which neighborhoods inconsistent

Partitioning: Recursive subdivision

System: HIVE

- different encoding for second-level regions
- choropleth maps

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) I5:6 (2009), 977-984.]

How to handle complexity: 3 more strategies

+ I previous

- reduce what is shown within single view

Reduce items and attributes

- reduce/increase: inverses
- filter
- pro: straightforward and intuitive
- to understand and compute
- con: out of sight, out of mind
- aggregation
- pro: inform about whole set
- con: difficult to avoid losing signal
- not mutually exclusive
- combine filter, aggregate
- combine reduce, facet, change, derive
Θ Filter
\rightarrow Items

\rightarrow Attributes

Θ Aggregate
\rightarrow Items

\rightarrow Attributes

Θ Filter

Θ Aggregate

Θ Embed

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
-5 quant attribs
- median: central line
- lower and upper quartile: boxes
- lower upper fences: whiskers
- values beyond which items are outliers

- outliers beyond fence cutoffs explicitly shown
[40 years of boxplots.Wickham and Stryjewski. 20I 2. had.co.nz]

Idiom: Dimensionality reduction for documents

- attribute aggregation
- derive low-dimensional target space from high-dimensional measured space

More Information

- this talk
http://www.cs.ubc.ca/~tmm/talks.html\#vadI5uw
- book page (including tutorial lecture slides) http://www.cs.ubc.ca/~tmm/vadbook
- 20\% promo code for book+ebook combo: HVNI7
- http://www.crcpress.com/product/isbn/978I466508910
-illustrations: Eamonn Maguire
- papers, videos, software, talks, full courses http://www.cs.ubc.ca/group/infovis http://www.cs.ubc.ca/~tmm

Visualization Analysis and Design

