Visualization Analysis & Design Full-Day Tutorial Session 3

Tamara Munzner

Department of Computer Science University of British Columbia

Sanger Institute / European Bioinformatics Institute June 2014, Cambridge UK

http://www.cs.ubc.ca/~tmm/talks.html#minicourse | 4

Outline

- Visualization Analysis Framework
 Session I 9:30-10:45am
 - Introduction: Definitions
 - Analysis: What, Why, How
 - -Marks and Channels

- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

- Idiom Design Choices
 Session 2 11:00am-12:15pm
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
 - -Map Color
- Guidelines and Examples
 Session 4 3-4:30pm
 - Rules of Thumb
 - Validation
 - BioVis Analysis Example

Idiom design choices: Part I

Encode

→ Separate

→ Order

→ Use

Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Shape

→ Motion

Direction, Rate, Frequency, ...

Idiom design choices: Part 2

Manipulate

Facet

Reduce

→ Change

Juxtapose

→ Filter

→ Select

Partition

Aggregate

→ Navigate

Superimpose

→ Embed

Manipulate

Change over Time

→ Select

- Navigate
 - → Item Reduction
 - → Zoom
 Geometric or Semantic

→ Pan/Translate

→ Constrained

- → Attribute Reduction
 - → Slice

→ Cut

→ Project

Change over time

- change any of the other choices
 - encoding itself
 - parameters
 - -arrange: rearrange, reorder
 - -aggregation level, what is filtered...
- why change?
 - one of four major strategies
 - change over time
 - facet data by partitioning into multiple views
 - reduce amount of data shown within view
 - embedding focus + context together
 - -most obvious, powerful, flexible
 - interaction entails change

Idiom: Re-encode

System: **Tableau**

Idiom: Reorder

System: LineUp

data: tables with many attributes

task: compare rankings

[LineUp:Visual Analysis of Multi-Attribute Rankings. Gratzl, Lex, Gehlenborg, Pfister, and Streit. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2013) 19:12 (2013), 2277–2286.]

ldiom: Realign

- stacked bars
 - easy to compare
 - first segment
 - total bar
- align to different segment
 - supports flexible comparison

System: LineUp

Idiom: Animated transitions

- smooth transition from one state to another
 - -alternative to jump cuts
 - -support for item tracking when amount of change is limited
- example: multilevel matrix views
 - -scope of what is shown narrows down
 - middle block stretches to fill space, additional structure appears within
 - other blocks squish down to increasingly aggregated representations

[Using Multilevel Call Matrices in Large Software Projects. van Ham. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 227–232, 2003.]

Select and highlight

- selection: basic operation for most interaction
- design choices
 - how many selection types?
 - click vs hover: heavyweight, lightweight
 - primary vs secondary: semantics (eg source/target)
- highlight: change visual encoding for selection targets
 - -color
 - limitation: existing color coding hidden
 - other channels (eg motion)
 - -add explicit connection marks between items

Navigate: Changing item visibility

- change viewpoint
 - -changes which items are visible within view
 - -camera metaphor
 - zoom
 - geometric zoom: familiar semantics
 - semantic zoom: adapt object representation based on available pixelsdramatic change, or more subtle one
 - pan/translate
 - rotate
 - especially in 3D
 - -constrained navigation
 - often with animated transitions
 - often based on selection set

- → Item Reduction
 - → Zoom
 Geometric or Semantic

→ Pan/Translate

→ Constrained

Idiom: Semantic zooming

System: LiveRAC

- visual encoding change
 - colored box
 - -sparkline
 - -simple line chart
 - -full chart: axes and tickmarks

Navigate: Reducing attributes

- continuation of camera metaphor
 - -slice
 - show only items matching specific value for given attribute: slicing plane
 - axis aligned, or arbitrary alignment
 - -cut
 - show only items on far slide of plane from camera
 - project
 - change mathematics of image creation
 - orthographic
 - perspective
 - many others: Mercator, cabinet, ...

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - Chap 11: Manipulate View
- Animated Transitions in Statistical Data Graphics. Heer and Robertson. IEEE Trans. on Visualization and Computer Graphics (Proc. InfoVis07) 13:6 (2007), 1240–1247.
- Selection: 524,288 Ways to Say "This is Interesting". Wills. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 54–61, 1996.
- Smooth and efficient zooming and panning. van Wijk and Nuij. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 15–22, 2003.
- Starting Simple adding value to static visualisation through simple interaction. Dix and Ellis. Proc. Advanced Visual Interfaces (AVI), pp. 124–134, 1998.

Outline

- Visualization Analysis Framework
 Session I 9:30-10:45am
 - Introduction: Definitions
 - Analysis: What, Why, How
 - -Marks and Channels

- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

- Idiom Design Choices
 Session 2 11:00am-12:15pm
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
 - -Map Color
- Guidelines and Examples
 Session 4 3-4:30pm
 - Rules of Thumb
 - Validation
 - BioVis Analysis Example

Facet

Juxtapose

Partition

Superimpose

Juxtapose and coordinate views

- → Share Encoding: Same/Different
 - → Linked Highlighting

→ Share Data: All/Subset/None

→ Share Navigation

ldiom: Linked highlighting

System: **EDV**

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - multiform
- data: all shared

[Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237–246. IOS Press, 1995.]

ldiom: bird's-eye maps

System: Google Maps

- encoding: same
- data: subset shared
- navigation: shared
 - -bidirectional linking
- differences
 - -viewpoint
 - -(size)
- overview-detail

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1–31.]

Idiom: Small multiples

System: Cerebral

- encoding: same
- data: none shared
 - different attributes for node colors
 - -(same network layout)
- navigation: shared

[Cerebral:Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14:6 (2008), 1253–1260.]

Coordinate views: Design choice interaction

Juxtapose design choices

- design choices
 - -view count
 - few vs many
 - how many is too many? open research question
 - -view visibility
 - always side by side vs temporary popups
 - -view arrangement
 - user managed vs system arranges/aligns
- why juxtapose views?
 - -benefits: eyes vs memory
 - lower cognitive load to move eyes between 2 views than remembering previous state with I
 - -costs: display area
 - 2 views side by side each have only half the area of I view

System: Improvise

- investigate power of multiple views
 - pushing limits on view count, interaction complexity
 - reorderable lists
 - easy lookup
 - useful when linked to other encodings

[Building Highly-Coordinated Visualizations In Improvise. Weaver. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 159–166, 2004.]

Partition into views

- how to divide data between views
 - encodes association between items using spatial proximity
 - -major implications for what patterns are visible
 - -split according to attributes
- design choices
 - how many splits
 - all the way down: one mark per region?
 - stop earlier, for more complex structure within region?
 - -order in which attribs used to split
 - -how many views

Views and glyphs

view

-contiguous region in which visually encoded data is shown on the display

glyph

- object with internal structure that arises from multiple marks
- no strict dividing line
 - view: big/detailed
 - -glyph:small/iconic

→ Partition into Side-by-Side Views

Partitioning: List alignment

- single bar chart with grouped bars
 - split by state into regions
 - complex glyph within each region showing all ages
 - compare: easy within state, hard across ages

- small-multiple bar charts
 - split by age into regions
 - one chart per region
 - compare: easy within age, harder across states

- split by type
- then by neighborhood
- then time
 - -years as rows
 - -months as columns

System: **HIVE**

- switch order of splits
 - -neighborhood then type
- very different patterns

System: **HIVE**

- size regions by sale counts
 - not uniformly
- result: treemap

System: **HIVE**

- different encoding for second-level regions
 - -choropleth maps

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) 15:6 (2009), 977–984.]

Superimpose layers

- layer: set of objects spread out over region
 - each set is visually distinguishable group
 - extent: whole view
- design choices
 - –how many layers?
 - how are layers distinguished?
 - -small static set or dynamic from many possible?
 - how partitioned?
 - heavyweight with attribs vs lightweight with selection
- distinguishable layers
 - encode with different, nonoverlapping channels
 - two layers achieveable, three with careful design

Static visual layering

- foreground layer: roads
 - -hue, size distinguishing main from minor
 - -high luminance contrast from background
- background layer: regions
 - desaturated colors for water, parks, land areas
- user can selectively focus attention
- "get it right in black and white"
 - -check luminance contrast with greyscale view

[Get it right in black and white. Stone. 2010. http://www.stonesc.com/wordpress/2010/03/get-it-right-in-black-and-white]

Superimposing limits

- few layers, but many lines
 - -up to a few dozen
 - -but not hundreds
- superimpose vs juxtapose: empirical study
 - superimposed for local visual, multiple for global
 - same screen space for all multiples, single superimposed
 - -tasks
 - local: maximum, global: slope, discrimination

[Graphical Perception of Multiple Time Series.] Javed, McDonnel, and Elmqvist. IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE InfoVis 2010) 16:6 (2010), 927–934.]

CPU utilization over time

Dynamic visual layering

- interactive, from selection
 - lightweight: click
 - very lightweight: hover

• ex: I-hop neighbors

[Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Barsky, Gardy, Hancock, and Munzner. Bioinformatics 23:8 (2007), 1040–1042.]

System: Cerebral

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - Chap 12: Facet Into Multiple Views
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1–31.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.
- Zooming versus multiple window interfaces: Cognitive costs of visual comparisons. Plumlee and Ware. ACM Trans. on Computer-Human Interaction (ToCHI) 13:2 (2006), 179–209.
- Exploring the Design Space of Composite Visualization. Javed and Elmqvist. Proc. Pacific Visualization Symp. (Pacific Vis), pp. 1–9, 2012.
- Visual Comparison for Information Visualization. Gleicher, Albers, Walker, Jusufi, Hansen, and Roberts. Information Visualization 10:4 (2011), 289–309.
- Guidelines for Using Multiple Views in Information Visualizations. Baldonado, Woodruff, and Kuchinsky. In Proc. ACM Advanced Visual Interfaces (AVI), pp. 110–119, 2000.
- Cross-Filtered Views for Multidimensional Visual Analysis. Weaver. IEEE Trans. Visualization and Computer Graphics 16:2 (Proc. InfoVis 2010), 192–204, 2010.
- Linked Data Views. Wills. In Handbook of Data Visualization, Computational Statistics, edited by Unwin, Chen, and Härdle, pp. 216–241. Springer-Verlag, 2008.
- Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications. Borgo, Kehrer, Chung, Maguire, Laramee, Hauser, Ward, and Chen. In Eurographics State of the Art Reports, pp. 39–63, 2013.

Outline

- Visualization Analysis Framework
 Session I 9:30-10:45am
 - Introduction: Definitions
 - Analysis: What, Why, How
 - -Marks and Channels

- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

- Idiom Design Choices
 Session 2 11:00am-12:15pm
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
 - -Map Color
- Guidelines and Examples
 Session 4 3-4:30pm
 - Rules of Thumb
 - Validation
 - BioVis Analysis Example

Reduce items and attributes

- reduce/increase: inverses
- filter
 - -pro: straightforward and intuitive
 - to understand and compute
 - -con: out of sight, out of mind
- aggregation
 - -pro: inform about whole set
 - con: difficult to avoid losing signal
- not mutually exclusive
 - -combine filter, aggregate
 - -combine reduce, change, facet

Reducing Items and Attributes

→ Filter

→ Items

→ Attributes

- Aggregate
 - → Items

→ Attributes

Reduce

Filter

Aggregate

→ Embed

ldiom: dynamic filtering

System: FilmFinder

- item filtering
- browse through tightly coupled interaction
 - -alternative to queries that might return far too many or too few

[Visual information seeking: Tight coupling of dynamic query filters with starfield displays. Ahlberg and Shneiderman. Proc. ACM Conf. on Human Factors in Computing Systems (CHI), pp. 313–317, 1994.]

Idiom: scented widgets

- augment widgets for filtering to show information scent
 - -cues to show whether value in drilling down further vs looking elsewhere
- concise, in part of screen normally considered control panel

[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2007) 13:6 (2007), 1129–1136.]

Idiom: DOSFA

- attribute filtering
- encoding: star glyphs

[Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration Of High Dimensional Datasets. Yang, Peng, Ward, and Rundensteiner. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 105–112, 2003.]

Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
 - new table: keys are bins, values are counts
- bin size crucial
 - -pattern can change dramatically depending on discretization
 - -opportunity for interaction: control bin size on the fly

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
 - -5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown

[40 years of boxplots.Wickham and Stryjewski. 2012. had.co.nz]

Idiom: Hierarchical parallel coordinates

- dynamic item aggregation
- derived data: hierarchical clustering
- encoding:
 - -cluster band with variable transparency, line at mean, width by min/max values
 - color by proximity in hierarchy

[Hierarchical Parallel Coordinates for Exploration of Large Datasets. Fua, Ward, and Rundensteiner. Proc. IEEE Visualization Conference (Vis '99), pp. 43–50, 1999.]

Dimensionality reduction

- attribute aggregation
 - derive low-dimensional target space from high-dimensional measured space
 - -use when you can't directly measure what you care about
 - true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
 - latent factors, hidden variables

derived data: 2D target space

Dimensionality reduction for documents

Embed: Focus+Context

- combine information within single view
- elide
 - selectively filter and aggregate
- superimpose layer
 - -local lens
- distortion design choices
 - region shape: radial, rectilinear, complex
 - -how many regions: one, many
 - region extent: local, global
 - -interaction metaphor

Embed

→ Elide Data

→ Superimpose Layer

→ Distort Geometry

Idiom: DOITrees Revisited

• elide

- -some items dynamically filtered out
- -some items dynamically aggregated together
- -some items shown in detail

Idiom: Fisheye Lens

- distort geometry
 - shape: radial
 - -focus: single extent
 - extent: local
 - -metaphor: draggable lens

http://tulip.labri.fr/TulipDrupal/?q=node/35 | http://tulip.labri.fr/TulipDrupal/?q=node/37 |

Idiom: Stretch and Squish Navigation

- distort geometry
 - -shape: rectilinear
 - -foci: multiple
 - -impact: global
 - -metaphor: stretch and squish, borders fixed

System: TreeJuxtaposer

[TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context With Guaranteed Visibility. Munzner, Guimbretiere, Tasiran, Zhang, and Zhou. ACM Transactions on Graphics (Proc. SIGGRAPH) 22:3 (2003), 453–462.]

Distortion costs and benefits

benefits

combine focus and context information in single view

costs

- -length comparisons impaired
 - network/tree topology comparisons unaffected: connection, containment
- effects of distortion unclear if original structure unfamiliar
- object constancy/tracking maybe impaired

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - Chap 14: Embed: Focus+Context
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1–31.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.
- Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines. Elmqvist and Fekete. IEEE Transactions on Visualization and Computer Graphics 16:3 (2010), 439–454.
- A Fisheye Follow-up: Further Reflection on Focus + Context. Furnas. Proc. ACM Conf. Human Factors in Computing Systems (CHI), pp. 999–1008, 2006.