Visualization Analysis \& Design Full-Day Tutorial Session 3

Tamara Munzner

Department of Computer Science University of British Columbia

Sanger Institute / European Bioinformatics Institute
June 2014, Cambridge UK

- Visualization Analysis Framework Session I 9:30-10:45am
- Introduction: Definitions
- Analysis: What,Why, How
- Marks and Channels
- Idiom Design Choices, Part 2 Session 3 I:/5pm-2:45pm
- Manipulate: Change, Select, Navigate
-Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate, Embed
- Idiom Design Choices Session 2 II:00am-I2:15pm
- Arrange Tables
- Arrange Spatial Data
- Arrange Networks and Trees
- Map Color
- Guidelines and Examples

Session 4 3-4:30pm
-Rules of Thumb

- Validation
-BioVis Analysis Example

Idiom design choices: Part I

Encode

Idiom design choices: Part 2

Manipulate
Θ Change

Θ Select

Θ Navigate
$\because \because$ 〉
Θ Partition

Θ Superimpose

Reduce
Θ Filter

Θ Aggregate

Θ Embed

Manipulate

Θ Change over Time

Θ Select

Θ Navigate
\rightarrow Item Reduction
\rightarrow Zoom Geometric or Semantic

\rightarrow Pan/Translate

\rightarrow Attribute Reduction
\rightarrow Slice

\rightarrow Cut

\rightarrow Project

$$
\stackrel{\bullet}{\bullet \bullet} \rightarrow \left\lvert\, \begin{array}{ll}
\prime^{\prime} \\
\hline
\end{array}\right.
$$

Change over time

- change any of the other choices
- encoding itself
- parameters
- arrange: rearrange, reorder
-aggregation level, what is filtered...
- why change?
- one of four major strategies
- change over time
- facet data by partitioning into multiple views
- reduce amount of data shown within view
- embedding focus + context together
-most obvious, powerful, flexible
- interaction entails change

Idiom: Re-encode

System: Tableau

Idiom: Reorder

System: LineUp

- data: tables with many attributes

- task: compare rankings

[LineUp:Visual Analysis of Multi-Attribute Rankings. Gratzl, Lex, Gehlenborg, Pfister, and Streit. IEEE Trans.Visualization and Computer Graphics (Proc. InfoVis 20I3) I9:I2 (2013), 2277-2286.]

Idiom: Realign

System: LineUp

- stacked bars
- easy to compare
- first segment
- total bar
- align to different segment
-supports flexible comparison

[LineUp:Visual Analysis of Multi-Attribute Rankings.Gratzl, Lex, Gehlenborg, Pfister, and Streit. IEEE Trans.Visualization and Computer Graphics (Proc. InfoVis 20I3) I9:I2 (2013), 2277-2286.]

Idiom: Animated transitions

- smooth transition from one state to another
- alternative to jump cuts
- support for item tracking when amount of change is limited
- example: multilevel matrix views
- scope of what is shown narrows down
- middle block stretches to fill space, additional structure appears within
- other blocks squish down to increasingly aggregated representations

[Using Multilevel Call Matrices in Large Software Projects. van Ham. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 227-232, 2003.]

Select and highlight

- selection: basic operation for most interaction
- design choices
-how many selection types?
- click vs hover: heavyweight, lightweight
- primary vs secondary: semantics (eg source/target)
- highlight: change visual encoding for selection targets
- color
- limitation: existing color coding hidden
- other channels (eg motion)
-add explicit connection marks between items

Navigate: Changing item visibility

- change viewpoint
-changes which items are visible within view
- camera metaphor
- zoom
- geometric zoom: familiar semantics
- semantic zoom: adapt object representation based on available pixels » dramatic change, or more subtle one
- pan/translate
- rotate
- especially in 3D
- constrained navigation
- often with animated transitions
Θ Navigate
\rightarrow Item Reduction
\rightarrow Zoom Geometric or Semantic

\rightarrow Pan/Translate

\rightarrow Constrained

- often based on selection set

Idiom: Semantic zooming

System: LiveRAC

- visual encoding change
- colored box
- sparkline
- simple line chart
- full chart: axes and tickmarks

Navigate: Reducing attributes

- continuation of camera metaphor - slice
- show only items matching specific value for given attribute: slicing plane
- axis aligned, or arbitrary alignment - cut
- show only items on far slide of plane from camera
- project
- change mathematics of image creation
- orthographic
- perspective
- many others: Mercator, cabinet, ...

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014. - Chap II:Manipulate View
- Animated Transitions in Statistical Data Graphics. Heer and Robertson. IEEE Trans. on Visualization and Computer Graphics (Proc. InfoVis07) I3:6 (2007), I2401247.
- Selection: 524,288 Ways to Say "This is Interesting". Wills. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 54-6I, 1996.
- Smooth and efficient zooming and panning. van $\mathrm{W}_{\mathrm{ijk}}$ and Nuij. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I5-22, 2003.
- Starting Simple - adding value to static visualisation through simple interaction. Dix and Ellis. Proc.Advanced Visual Interfaces (AVI), pp. I24-I34, I998.
- Visualization Analysis Framework Session I 9:30-10:45am
- Introduction: Definitions
- Analysis: What,Why, How
- Marks and Channels
- Idiom Design Choices, Part 2 Session 3 I:/5pm-2:45pm
- Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate, Embed
- Idiom Design Choices Session 2 II:00am-I2:15pm
- Arrange Tables
- Arrange Spatial Data
- Arrange Networks and Trees
- Map Color
- Guidelines and Examples

Session 4 3-4:30pm
-Rules of Thumb

- Validation
-BioVis Analysis Example

Facet
Θ Juxtapose

Partition
Superimpose

Juxtapose and coordinate views

\rightarrow Share Encoding: Same/Different
\rightarrow Linked Highlighting

\rightarrow Share Data: All/Subset/None

\rightarrow Share Navigation

Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
- powerful and pervasive interaction idiom
- encoding: different
- multiform
- data: all shared

[Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237-246. IOS Press, I995.]

Idiom: bird's-eye maps

System: Google Maps

- encoding: same
- data: subset shared
- navigation: shared - bidirectional linking
- differences
- viewpoint
- (size)
- overview-detail

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.]

Idiom: Small multiples

System: Cerebral

- encoding: same
- data: none shared
- different attributes for node colors
-(same network layout)
- navigation: shared

[Cerebral:Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) I4:6 (2008), I253-I 260.$]$

Coordinate views: Design choice interaction

		Data				
		All	Subset	None		
	Same	Redundant		Small Multiples		
	Different	$\\|\\| .$ Multiform	Multiform, Overview/ Detail	No Linkage		

Juxtapose design choices

- design choices
- view count
- few vs many
- how many is too many? open research question
- view visibility
- always side by side vs temporary popups
- view arrangement
- user managed vs system arranges/aligns
- why juxtapose views?
-benefits: eyes vs memory
- lower cognitive load to move eyes between 2 views than remembering previous state with I
- costs: display area
- 2 views side by side each have only half the area of I view

System:Improvise

- investigate power of multiple views
- pushing limits on view count, interaction complexity
- reorderable lists
- easy lookup
- useful when linked to other encodings

[Building Highly-Coordinated Visualizations In Improvise. Weaver. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I59-I 66, 2004.]

Partition into views

- how to divide data between views
- encodes association between items using spatial proximity
- major implications for what patterns are visible
- split according to attributes
- design choices
-how many splits
- all the way down: one mark per region?
- stop earlier, for more complex structure within region?
- order in which attribs used to split
-how many views

Θ Partition into Side-by-Side Views

Views and glyphs

- view

- contiguous region in which visually encoded data is shown on the display
- glyph
- object with internal structure that arises from multiple marks
- no strict dividing line
- view: big/detailed
-glyph:small/iconic
Θ Partition into Side-by-Side Views

Partitioning: List alignment

- single bar chart with grouped bars
- split by state into regions
- complex glyph within each region showing all ages
- compare: easy within state, hard across ages
- small-multiple bar charts
- split by age into regions
- one chart per region
- compare: easy within age, harder across states

Partitioning: Recursive subdivision

System: HIVE

- split by type
- then by neighborhood
- then time
- years as rows
- months as columns

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) I5:6 (2009), 977-984.]

Partitioning: Recursive subdivision

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) I5:6 (2009), 977-984.]

Partitioning: Recursive subdivision

System: HIVE

- size regions by sale counts
- not uniformly
- result: treemap

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) I5:6 (2009), 977-984.]

Partitioning: Recursive subdivision

System: HIVE

- different encoding for second-level regions
- choropleth maps

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) I5:6 (2009), 977-984.]

Superimpose layers

- Iayer: set of objects spread out over region
- each set is visually distinguishable group
- extent: whole view
Θ Superimpose Layers
- design choices
-how many layers?

- how are layers distinguished?
- small static set or dynamic from many possible?
-how partitioned?
- heavyweight with attribs vs lightweight with selection
- distinguishable layers
- encode with different, nonoverlapping channels
- two layers achieveable, three with careful design

Static visual layering

- foreground layer: roads
- hue, size distinguishing main from minor
-high luminance contrast from background
- background layer: regions
- desaturated colors for water, parks, land areas
- user can selectively focus attention
- "get it right in black and white"
- check luminance contrast with greyscale view
[Get it right in black and white. Stone. 2010. http://www.stonesc.com/wordpress/2010/03/get-it-right-in-black-and-white]

Superimposing limits

- few layers, but many lines
- up to a few dozen
-but not hundreds
- superimpose vs juxtapose: empirical study
- superimposed for local visual, multiple for global
- same screen space for all multiples, single superimposed
- tasks
- local: maximum, global: slope, discrimination

Dynamic visual layering

- interactive, from selection
- lightweight: click
- very lightweight: hover
- ex: l-hop neighbors
[Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Barsky, Gardy, Hancock, and Munzner. Bioinformatics 23:8 (2007), I040-1042.]

System: Cerebral

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
- Chap 12: Facet Into Multiple Views
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.
- Zooming versus multiple window interfaces: Cognitive costs of visual comparisons. Plumlee and Ware. ACM Trans. on ComputerHuman Interaction (ToCHI) I3:2 (2006), I79-209.
- Exploring the Design Space of Composite Visualization. Javed and Elmqvist. Proc. Pacific Visualization Symp. (PacificVis), pp. I-9, 20 I 2.
- Visual Comparison for Information Visualization. Gleicher, Albers,Walker, Jusufi, Hansen, and Roberts. Information Visualization 10:4 (201I), 289-309.
- Guidelines for Using Multiple Views in Information Visualizations. Baldonado,Woodruff, and Kuchinsky. In Proc. ACM Advanced Visual Interfaces (AVI), pp. I IO-II9, 2000.
- Cross-Filtered Views for Multidimensional Visual Analysis. Weaver. IEEE Trans.Visualization and Computer Graphics 16:2 (Proc. InfoVis 20IO), I92-204, 2010.
- Linked Data Views. Wills. In Handbook of Data Visualization, Computational Statistics, edited by Unwin, Chen, and Härdle, pp. 216-24I. Springer-Verlag, 2008.
- Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications. Borgo, Kehrer, Chung, Maguire, Laramee, Hauser,Ward, and Chen. In Eurographics State of the Art Reports, pp. 39-63, 2013.

Outline

- Visualization Analysis Framework Session I 9:30-10:45am
- Introduction: Definitions
- Analysis: What,Why, How
- Marks and Channels
- Idiom Design Choices, Part 2 Session 3 I:I5pm-2:45pm
-Manipulate: Change, Select, Navigate
-Facet:Juxtapose, Partition, Superimpose
-Reduce: Filter, Aggregate, Embed
- Idiom Design Choices Session 2 II:00am-I2:15pm
- Arrange Tables
- Arrange Spatial Data
- Arrange Networks and Trees
- Map Color
- Guidelines and Examples

Session 4 3-4:30pm
-Rules of Thumb

- Validation
-BioVis Analysis Example

Reduce items and attributes

- reduce/increase: inverses
- filter
- pro: straightforward and intuitive
- to understand and compute
- con: out of sight, out of mind
- aggregation
- pro: inform about whole set
- con: difficult to avoid losing signal
- not mutually exclusive
- combine filter, aggregate
- combine reduce, change, facet

Reducing Items and Attributes

Reduce

\rightarrow Items

\rightarrow Attributes

Θ Aggregate
\rightarrow Items

\rightarrow Attributes

Θ Filter

Θ Aggregate

Θ Embed

Idiom: dynamic filtering

System: FilmFinder

- item filtering

- browse through tightly coupled interaction
- alternative to queries that might return far too many or too few

[Visual information seeking:Tight coupling of dynamic query filters with starfield displays. Ahlberg and Shneiderman.
Proc.ACM Conf. on Human Factors in Computing Systems (CHI), pp. 313-3I7, 1994.]

Idiom: scented widgets

- augment widgets for filtering to show information scent
- cues to show whether value in drilling down further vs looking elsewhere
- concise, in part of screen normally considered control panel

[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE Trans.
Visualization and Computer Graphics (Proc. InfoVis 2007) I3:6 (2007), I | 29-| | 36.]

Idiom: DOSFA

- attribute filtering
- encoding: star glyphs

[Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration Of High Dimensional Datasets. Yang, Peng, Ward, and. Rundensteiner. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I05-I I 2, 2003.]

Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
- new table: keys are bins, values are counts
- bin size crucial

- pattern can change dramatically depending on discretization
-opportunity for interaction: control bin size on the fly

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
-5 quant attribs
- median: central line
- lower and upper quartile: boxes
- lower upper fences: whiskers
- values beyond which items are outliers

- outliers beyond fence cutoffs explicitly shown
[40 years of boxplots.Wickham and Stryjewski. 20I 2. had.co.nz]

Idiom: Hierarchical parallel coordinates

- dynamic item aggregation
- derived data: hierarchical clustering
- encoding:
-cluster band with variable transparency, line at mean, width by min/max values
- color by proximity in hierarchy

[Hierarchical Parallel Coordinates for Exploration of Large Datasets. Fua, Ward, and Rundensteiner. Proc. IEEE Visualization Conference (Vis ’99), pp. 43- 50, I999.]

Dimensionality reduction

- attribute aggregation
- derive low-dimensional target space from high-dimensional measured space
- use when you can't directly measure what you care about
- true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
- latent factors, hidden variables

Tumor
 Measurement Data

derived data: 2D target space

Dimensionality reduction for documents

Task 3

What?	Why?
Θ In Scatterplot	Θ Produce
Θ In Clusters \& points	Θ Annotate
Θ Out Labels for clusters	

Embed: Focus+Context

- combine information within single view
- elide
- selectively filter and aggregate
- superimpose layer
- local lens
- distortion design choices
-region shape: radial, rectilinear, complex
-how many regions: one, many
-region extent: local, global
-interaction metaphor
Θ Embed
\rightarrow Elide Data

\rightarrow Superimpose Layer

\rightarrow Distort Geometry

Idiom: DOITrees Revisited

- elide
- some items dynamically filtered out
- some items dynamically aggregated together
-some items shown in detail

[DOITrees Revisited: Scalable, Space-Constrained Visualization of Hierarchical Data. Heer and Card. Proc.Advanced Visual Interfaces (AVI), pp. 42 I-424, 2004.] 48

Idiom: Fisheye Lens

- distort geometry
- shape: radial
-focus: single extent
- extent: local
-metaphor: draggable lens

http://tulip.labri.fr/TulipDrupal/?q=node/351 http://tulip.labri.frr/TulipDrupall?q=node/371

Idiom: Stretch and Squish Navigation

- distort geometry

- shape: rectilinear
- foci: multiple
- impact: global
-metaphor: stretch and squish, borders fixed

System: TreeJuxtaposer

[TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context With Guaranteed Visibility. Munzner, Guimbretiere, Tasiran, Zhang, and Zhou. ACM Transactions on Graphics (Proc. SIGGRAPH) 22:3 (2003), 453-462.]

Distortion costs and benefits

magnifying lens

- benefits
- combine focus and context information in single view
- costs
- length comparisons impaired
- network/tree topology comparisons unaffected: connection, containment
- effects of distortion unclear if original structure unfamiliar
- object constancy/tracking maybe impaired
fisheye lens

neighborhood layering

Bring and Go

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
- Chap I4: Embed: Focus+Context
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.
- Hierarchical Aggregation for Information Visualization: Overview,Techniques and Design Guidelines. Elmqvist and Fekete. IEEE Transactions on Visualization and Computer Graphics 16:3 (20I0), 439-454.
- A Fisheye Follow-up: Further Reflection on Focus + Context. Furnas. Proc.ACM Conf. Human Factors in Computing Systems (CHI), pp. 999-I008, 2006.

