Visualization Analysis & Design **Full-Day Tutorial** Session 2

Tamara Munzner

Department of Computer Science University of British Columbia

Sanger Institute / European Bioinformatics Institute June 2014, Cambridge UK

http://www.cs.ubc.ca/~tmm/talks.html#minicourse14

Outline

- Visualization Analysis Framework Session | 9:30-10:45am – Introduction: Definitions
 - -Analysis: What, Why, How
 - Marks and Channels
- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

Idiom Design Choices Session 2 11:00am-12:15pm

- -Arrange Tables
- -Arrange Spatial Data
- -Arrange Networks and Trees
- -Map Color
- Guidelines and Examples Session 4 3-4:30pm
 - -Rules of Thumb
 - -Validation
 - BioVis Analysis Example

http://www.cs.ubc.ca/~tmm/talks.html#minicoursel4

How?

Er	ncode		Manipulate
→ Arrange→ Express	→ Separate	 Map from categorical and ordered attributes 	
→ Order	→ Align	$\rightarrow Color$ $\rightarrow Hue \qquad \rightarrow Saturation \rightarrow Luminance$	Select
		→ Size, Angle, Curvature,	
→ Use		• ■ ■ ///))) → Shape + ● ■ ▲	→ Navigate<>
Wh Wh	ny?	Motion Direction, Rate, Frequency,	
Но	w?		

→ Embed

Arrange space

Encode

- → Arrange
 - → Express
- → Separate

→ Order

•-----

→ Align

→ Use

4

Arrange tables

→ Express Values

→ Separate, Order, Align Regions

→ 3 Keys

Many Keys Recursive Subdivision

→ Axis Orientation

→ Rectilinear

- → Layout Density
 - → Dense

→ Parallel

→ Radial

L.

→ Space-Filling

Keys and values

- key
 - independent attribute
 - used as unique index to look up items
 - -simple tables: I key
 - multidimensional tables: multiple keys

• value

- -dependent attribute, value of cell
- classify arrangements by key count -0, 1, 2, many...

→ Multidimensional Table

Recursive Subdivision

Idiom: scatterplot

• express values

-quantitative attributes

- no keys, only values
 - data
 - 2 quant attribs
 - -mark: points
 - channels
 - horiz + vert position
 - tasks
 - find trends, outliers, distribution, correlation, clusters
 - scalability
 - hundreds of items

[A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3–28.]

Some keys: Categorical regions

• **regions**: contiguous bounded areas distinct from each other -using space to **separate** (proximity)

- -following expressiveness principle for categorical attributes
- use ordered attribute to **order** and **align** regions

Matrix

Recursive Subdivision

Idiom: bar chart

- one key, one value
 - data
 - I categ attrib, I quant attrib
 - mark: lines
 - channels
 - length to express quant value
 - spatial regions: one per mark
 - separated horizontally, aligned vertically
 - ordered by quant attrib
 - » by label (alphabetical), by length attrib (data-driven)
 - –task
 - compare, lookup values
 - scalability
 - dozens to hundreds of levels for key attrib

Animal Type

Animal Type

Idiom: stacked bar chart

• one more key

-data

- 2 categ attrib, I quant attrib
- -mark: vertical stack of line marks
 - glyph: composite object, internal structure from multiple marks
- channels
 - length and color hue
 - spatial regions: one per glyph
 - aligned: full glyph, lowest bar component
 - unaligned: other bar components

-task

- part-to-whole relationship
- scalability
 - several to one dozen levels for stacked attrib

[Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 2001.]

Idiom: streamgraph

- generalized stacked graph
 - emphasizing horizontal continuity
 - vs vertical items
 - -data
 - I categ key attrib (artist)
 - I ordered key attrib (time)
 - I quant value attrib (counts)
 - -derived data
 - geometry: layers, where height encodes counts
 - I quant attrib (layer ordering)
 - scalability
 - hundreds of time keys
 - dozens to hundreds of artist keys

-more than stacked bars, since most layers don't extend across whole chart

[Stacked Graphs Geometry & Aesthetics. Byron and Wattenberg. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14(6): 1245–1252, (2008).]

Idiom: line chart

- one key, one value
 - -data
 - 2 quant attribs
 - -mark: points
 - line connection marks between them
 - channels
 - aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions
 - -task
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Choosing bar vs line charts

- depends on type of key attrib -bar charts if categorical -line charts if ordered
- do not use line charts for categorical key attribs
 - -violates expressiveness principle
 - implication of trend so strong that it overrides semantics!
 - "The more male a person is, the taller he/she is"

1073-1079.]

after [Bars and Lines: A Study of Graphic Communication. Zacks and Tversky. Memory and Cognition 27:6 (1999),

Idiom: heatmap

- two keys, one value
 - data
 - 2 categ attribs (gene, experimental condition)
 - I quant attrib (expression levels)
 - marks: area
 - separate and align in 2D matrix
 - indexed by 2 categorical attributes
 - channels
 - color by quant attrib
 - (ordered diverging colormap)

–task

- find clusters, outliers
- scalability
 - IM items, 100s of categ levels, ~10 quant attrib levels

			- Barris
➔ 1 Key		\rightarrow	2 K
List			Mat
	П	A STORE	
	H		

Many Keys Recursive Subdivision

Idiom: cluster heatmap

- in addition
 - -derived data
 - 2 cluster hierarchies
 - dendrogram
 - parent-child relationships in tree with connection line marks
 - leaves aligned so interior branch heights easy to compare
 - -heatmap
 - marks (re-)ordered by cluster hierarchy traversal

L

Idioms: scatterplot matrix, parallel coordinates

- scatterplot matrix (SPLOM)
 - rectilinear axes, point mark
 - -all possible pairs of axes
 - scalability
 - one dozen attribs
 - dozens to hundreds of items
- parallel coordinates
 - parallel axes, jagged line representing item
 - rectilinear axes, item as point
 - axis ordering is major challenge
 - scalability
 - dozens of attribs
 - hundreds of items

Parallel Coordinates

Table

Math	Physics	Dance	Drama
85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

- scatterplot matrix
 - -positive correlation
 - diagonal low-to-high
 - negative correlation
 - diagonal high-to-low
 - -uncorrelated
- parallel coordinates
 - -positive correlation
 - parallel line segments
 - negative correlation
 - all segments cross at halfway point
 - -uncorrelated
 - scattered crossings

[Hyperdimensional Data Analysis Using Parallel Coordinates. Wegman. Journ. American Statistical Association 85:411 (1990), 664–675.]

Task: Correlation

Journ. Computational and Graphical Statistics 19:1 (2010), 3–28.]

Figure 3. Parallel Coordinate Plot of Six-Dimensional Data Illustrating Correlations of p = 1, .8, .2, 0, -.2, -.8, and -1.

Idioms: radial bar chart, star plot

radial bar chart

- radial axes meet at central ring, line mark

• star plot

- radial axes, meet at central point, line mark

• bar chart

- rectilinear axes, aligned vertically

- accuracy
 - -length unaligned with radial
 - less accurate than aligned with rectilinear

[Vismon: Facilitating Risk Assessment and Decision Making In Fisheries Management. Booshehrian, Möller, Peterman, and Munzner. Technical Report TR 2011-04, Simon Fraser University, School of Computing Science, 2011.]

Idioms: pie chart, polar area chart

• pie chart

- -area marks with angle channel
- -accuracy: angle/area much less accurate than line length
- polar area chart
 - -area marks with length channel
 - -more direct analog to bar charts
- data

- I categ key attrib, I quant value attrib

- task
 - -part-to-whole judgements

[A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3–28.] 20

Idioms: normalized stacked bar chart

- task
 - -part-to-whole judgements
- normalized stacked bar chart
 - -stacked bar chart, normalized to full vert height
 - -single stacked bar equivalent to full pie
 - high information density: requires narrow rectangle
- pie chart
 - information density: requires large circle

http://bl.ocks.org/mbostock/3887235, http://bl.ocks.org/mbostock/3886208, http://bl.ocks.org/mbostock/3886394.

Idiom: glyphmaps

rectilinear good for linear vs nonlinear trends

[Glyph-maps for Visually Exploring Temporal Patterns in Climate Data and Models. Wickham, Hofmann, Wickham, and Cook. Environmetrics 23:5 (2012), 382–393.]

Orientation limitations

- rectilinear: scalability wrt #axes
 - 2 axes best
 - 3 problematic
 - more in afternoon
 - 4+ impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits
 - -angles lower precision than lengths
 - -asymmetry between angle and length
 - can be exploited!

[Uncovering Strengths and Weaknesses of Radial Visualizations an Empirical Approach. Diehl, Beck and Burch. IEEE TVCG (Proc. InfoVis) 16(6):935--942, 2010.]

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014. – Chap 7: Arrange Tables
- Visualizing Data. Cleveland. Hobart Press, 1993.
- A Brief History of Data Visualization. Friendly. 2008. http://www.datavis.ca/milestones

Outline

- Visualization Analysis Framework Session | 9:30-10:45am – Introduction: Definitions
 - -Analysis: What, Why, How
 - Marks and Channels
- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

Idiom Design Choices Session 2 11:00am-12:15pm

- -Arrange Tables
- -Arrange Spatial Data
- -Arrange Networks and Trees
- -Map Color
- Guidelines and Examples Session 4 3-4:30pm
 - -Rules of Thumb
 - -Validation
 - BioVis Analysis Example

http://www.cs.ubc.ca/~tmm/talks.html#minicoursel4

Arrange spatial data

→ Use Given

- → Geometry
 - → Geographic
 - → Other Derived
- → Spatial Fields
 - → Scalar Fields (one value per cell)
 - → Isocontours
 - → Direct Volume Rendering
 - → Vector and Tensor Fields (many values per cell)
 - → Flow Glyphs (local)
 - → Geometric (sparse seeds)
 - → Textures (dense seeds)
 - → Features (globally derived)

26

Idiom: choropleth map

- **use** given spatial data
 - -when central task is understanding spatial relationships
- data
 - -geographic geometry
 - -table with I quant attribute per region
- encoding
 - -use given geometry for area mark boundaries
 - sequential segmented colormap

http://bl.ocks.org/mbostock/4060606

Idiom: topographic map

- data
 - -geographic geometry
 - -scalar spatial field
 - I quant attribute per grid cell
- derived data
 - -isoline geometry
 - isocontours computed for specific levels of scalar values

Land Information New Zealand Data Service

Idiom: isosurfaces

- data
 - -scalar spatial field
 - I quant attribute per grid cell
- derived data
 - -isosurface geometry
 - isocontours computed for specific levels of scalar values
- task
 - -spatial relationships

[Interactive Volume Rendering Techniques. Kniss. Master's thesis, University of Utah Computer Science, 2002.]

Idioms: DVR, multidimensional transfer functions

- direct volume rendering
 - -transfer function maps scalar values to color, opacity
 - no derived geometry
- multidimensional transfer functions
 - derived data in joint 2D histogram
 - horiz axis: data values of scalar func
 - vert axis: gradient magnitude (direction of fastest change)
 - [more on cutting planes and histograms later]

[Multidimensional Transfer Functions for Volume Rendering. Kniss, Kindlmann, and Hansen. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 189–210. Elsevier, 2005.]

Vector and tensor fields

- data
 - many attribs per cell
- idiom families
 - flow glyphs
 - purely local
 - geometric flow
 - derived data from tracing particle trajectories
 - sparse set of seed points
 - texture flow
 - derived data, dense seeds
 - feature flow
 - global computation to detect features
 - encoded with one of methods above

Visualization and Computer Graphics (TVCG) 11:1 (2005), 59–70.]

[Comparing 2D vector field visualization methods: A user study. Laidlaw et al. IEEE Trans.

[Topology tracking for the visualization of time-dependent two-dimensional flows. Tricoche, Wischgoll, Scheuermann, and Hagen. Computers & Graphics 26:2 (2002), 249–257.]

Vector fields

- empirical study tasks
 - finding critical points, identifying their types
 - identifying what type of critical point is at a specific location
 - predicting where a particle starting at a specified point will end up (advection)

Visualization and Computer Graphics (TVCG) 11:1 (2005), 59–70.]

[Comparing 2D vector field visualization methods: A user study. Laidlaw et al. IEEE Trans.

[Topology tracking for the visualization of time-dependent two-dimensional flows. Tricoche, Wischgoll, Scheuermann, and Hagen. Computers & Graphics 26:2 (2002), 249–257.]

Idiom: similarity-clustered streamlines

- data
 - 3D vector field
- derived data (from field)
 - streamlines: trajectory particle will follow
- derived data (per streamline)
 - curvature, torsion, tortuosity
 - signature: complex weighted combination
 - compute cluster hierarchy across all signatures
 - encode: color and opacity by cluster
- tasks
 - find features, query shape
- scalability
 - millions of samples, hundreds of streamlines

[Similarity Measures for Enhancing Interactive Streamline Seeding. McLoughlin, Jones, Laramee, Malki, Masters, and. Hansen. IEEE Trans. Visualization and Computer Graphics 19:8 (2013), 1342–1353.]

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014. - Chap 8: Arrange Spatial Data
- How Maps Work: Representation, Visualization, and Design. MacEachren. Guilford Press, 1995.
- Overview of visualization. Schroeder and. Martin. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 3–39. Elsevier, 2005.
- Real-Time Volume Graphics. Engel, Hadwiger, Kniss, Reza-Salama, and Weiskopf. **AK Peters**, 2006.
- Overview of flow visualization. Weiskopf and Erlebacher. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 261–278. Elsevier, 2005.

Outline

- Visualization Analysis Framework Session | 9:30-10:45am – Introduction: Definitions
 - -Analysis: What, Why, How
 - Marks and Channels
- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

Idiom Design Choices Session 2 11:00am-12:15pm

- -Arrange Tables
- -Arrange Spatial Data
- Arrange Networks and Trees
- -Map Color
- Guidelines and Examples Session 4 3-4:30pm
 - -Rules of Thumb
 - -Validation
 - BioVis Analysis Example

http://www.cs.ubc.ca/~tmm/talks.html#minicoursel4

Arrange networks and trees

Arrange Networks and Trees

✓ TREES

× NETWORKS

Containment Marks

Idiom: force-directed placement

- visual encoding
 - link connection marks, node point marks
- considerations
 - spatial position: no meaning directly encoded
 - left free to minimize crossings
 - proximity semantics?
 - sometimes meaningful
 - sometimes arbitrary, artifact of layout algorithm
 - tension with length
 - long edges more visually salient than short
- tasks
 - explore topology; locate paths, clusters
- scalability
 - node/edge density E < 4N


```
var width = 960,
    height = 500;
var color = d3.scale.category20();
    http://mbostock.github.com/d3/ex/force.html
var force = d3.layout.force()
```

Idiom: **sfdp** (multi-level force-directed placement)

• data

- original: network
- -derived: cluster hierarchy atop it
- considerations
 - -better algorithm for same encoding technique
 - same: fundamental use of space
 - hierarchy used for algorithm speed/quality but not shown explicitly
 - (more on algorithm vs encoding in afternoon)
- scalability
 - nodes, edges: IK-10K
 - -hairball problem eventually hits

[Efficient and high quality force-directed graph drawing. Hu.The Mathematica Journal 10:37–71, 2005.]

http://www.research.att.com/yifanhu/GALLERY/GRAPHS/index1.html

Idiom: adjacency matrix view

- data: network
 - -transform into same data/encoding as heatmap
- derived data: table from network
 - I quant attrib
 - weighted edge between nodes
 - -2 categ attribs: node list x 2
- visual encoding
 - -cell shows presence/absence of edge
- scalability
 - IK nodes, IM edges

[NodeTrix: a Hybrid Visualization of Social Networks. Henry, Fekete, and McGuffin. IEEE TVCG (Proc. InfoVis) 13(6):1302-1309, 2007.]

[Points of view: Networks. Gehlenborg and Wong. Nature Methods 9:115.]

Connection vs. adjacency comparison

- adjacency matrix strengths
 - predictability, scalability, supports reordering
 - some topology tasks trainable
- node-link diagram strengths
 - -topology understanding, path tracing
 - intuitive, no training needed
- empirical study
 - -node-link best for small networks
 - -matrix best for large networks
 - if tasks don't involve topological structure!

[On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Ghoniem, Fekete, and Castagliola. Information Visualization 4:2 (2005), 114–135.]

http://www.michaelmcguffin.com/courses/vis/patternsInAdjacencyMatrix.png

Idiom: radial node-link tree

- data
 - -tree
- encoding
 - -link connection marks
 - -point node marks
 - -radial axis orientation
 - angular proximity: siblings
 - distance from center: depth in tree
- tasks
 - understanding topology, following paths
- scalability
 - -IK IOK nodes

Idiom: treemap

- data
 - -tree
 - I quant attrib at leaf nodes
- encoding
 - -area containment marks for hierarchical structure
 - rectilinear orientation
 - size encodes quant attrib
- tasks
 - -query attribute at leaf nodes
- scalability
 - IM leaf nodes

http://tulip.labri.fr/Documentation/3_7/userHandbook/html/ch06.html

Link marks: Connection and Containment

- marks as links (vs. nodes)
 - -common case in network drawing
 - ID case: connection
 - ex: all node-link diagrams
 - emphasizes topology, path tracing
 - networks and trees
 - -2D case: containment
 - ex: all treemap variants
 - emphasizes attribute values at leaves (size coding)
 - only trees

Node-Link Diagram

[Elastic Hierarchies: Combining Treemaps and Node-Link Diagrams. Dong, McGuffin, and Chignell. Proc. InfoVis 2005, p. 57-64.]

Treemap

Tree drawing idioms comparison

- data shown
 - link relationships
 - -tree depth
 - sibling order
- design choices
 - connection vs containment link marks
 - rectilinear vs radial layout
 - spatial position channels
- considerations
 - redundant? arbitrary?
 - information density?
 - avoid wasting space

Visualization 9:2 (2010), 115–140.]

[Quantifying the Space-Efficiency of 2D Graphical Representations of Trees. McGuffin and Robert. Information

Idiom: GrouseFlocks

- data: compound graphs
 - -network
 - -cluster hierarchy atop it
 - derived or interactively chosen
- visual encoding
 - -connection marks for network links
 - -containment marks for hierarchy
 - -point marks for nodes
- dynamic interaction
 - select individual metanodes in hierarchy to expand/ contract

[GrouseFlocks: Steerable Exploration of Graph Hierarchy Space. Archambault, Munzner, and Auber. IEEE TVCG 14(4): 900-913, 2008.]

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014. – Chap 9: Arrange Networks and Trees
- Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges. von Landesberger et al. Computer Graphics Forum 30:6 (2011), 1719–1749.
- Simple Algorithms for Network Visualization: A Tutorial. McGuffin. Tsinghua Science and Technology (Special Issue on Visualization and Computer Graphics) 17:4 (2012), 383-398.
- Drawing on Physical Analogies. Brandes. In Drawing Graphs: Methods and Models, LNCS Tutorial, 2025, edited by M. Kaufmann and D. Wagner, LNCS Tutorial, 2025, pp. 71– 86. Springer-Verlag, 2001.
- Treevis.net: A Tree Visualization Reference. Schulz. IEEE Computer Graphics and Applications 31:6 (2011), 11–15. http://www.treevis.net
- Perceptual Guidelines for Creating Rectangular Treemaps. Kong, Heer, and Agrawala. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis) 16:6 (2010), 990–998.

Outline

- Visualization Analysis Framework Session | 9:30-10:45am – Introduction: Definitions
 - -Analysis: What, Why, How
 - Marks and Channels
- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

- Idiom Design Choices Session 2 11:00am-12:15pm
 - -Arrange Tables
 - -Arrange Spatial Data
 - -Arrange Networks and Trees
 - -Map Color
- Guidelines and Examples Session 4 3-4:30pm
 - -Rules of Thumb
 - -Validation
 - BioVis Analysis Example

http://www.cs.ubc.ca/~tmm/talks.html#minicoursel4

Color: Luminance, saturation, hue

- 3 channels
 -what/where for categorical

 hue
 hue
 bauration

 Saturation
 Hue
 Hue
 Saturation
 - -RGB: poor choice for visual encoding
 - -HSL: better, but beware
 - lightness ≠ luminance
- transparency
 - -useful for creating visual layers
 - but cannot combine with luminance or saturation

Corners of the RGB color cube

L from HLS All the same

Luminance values

Colormaps

- 3-4 bins luminance, saturation
- size heavily affects salience
 - use high saturation for small regions, low saturation for large

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Categorical color: Discriminability constraints

noncontiguous small regions of color: only 6-12 bins

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

Ordered color: Rainbow is poor default

problems

- perceptually unordered
- perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - fewer hues for large-scale structure
 - multiple hues with monotonically increasing luminance for fine-grained
 - segmented rainbows good for categorical, ok for binned

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/lloydt/color/color.HTM]

[A Rule-based Tool for Assisting Colormap Selection. Bergman, Rogowitz, and Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

Map other channels

•	→ Size, A
• size	→ Len
–length accurate, 2D area ok, 3D volume poor	→ Ang
• angle	
– nonlinear accuracy	→ Area
 horizontal, vertical, exact diagonal 	→ Cur
• shape	→ Volu
 – complex combination of lower-level primitives 	
–many bins	→ Shape
• motion	+ (
–highly separable against static	Motic
 binary: great for highlighting 	→ Mot
-use with care to avoid irritation	Direo Freq

Angle

Sequential ordered line mark or arrow glyph

Diverging ordered arrow glyph

Cyclic ordered arrow glyph

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014. - Chap 10: Map Color and Other Channels
- ColorBrewer, Brewer.
 - -http://www.colorbrewer2.org
- Color In Information Display. Stone. IEEE Vis Course Notes, 2006. -<u>http://www.stonesc.com/Vis06</u>
- A Field Guide to Digital Color. Stone. AK Peters, 2003.
- Rainbow Color Map (Still) Considered Harmful. Borland and Taylor. IEEE Computer Graphics and Applications 27:2 (2007), 14–17.
- Visual Thinking for Design. Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann / Academic Press, 2004.

Outline

- Visualization Analysis Framework Session | 9:30-10:45am – Introduction: Definitions
 - -Analysis: What, Why, How
 - Marks and Channels
- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

Idiom Design Choices Session 2 11:00am-12:15pm

- -Arrange Tables
- -Arrange Spatial Data
- -Arrange Networks and Trees
- -Map Color
- Guidelines and Examples
 - Session 4 3-4:30pm
 - -Rules of Thumb
 - -Validation
 - BioVis Analysis Example

http://www.cs.ubc.ca/~tmm/talks.html#minicoursel4