

Outline

- Dimensionality Reduction
- Previous Work
- MDSteer Algorithm
- Results and Future Work

Dimensionality Reduction

- mapping multidimensional space into space of fewer dimensions
 - typically 2D for infovis
 - keep/explain as much variance as possible
 - show underlying dataset structure
- multidimensional scaling (MDS)
 - minimize differences between interpoint distances in high and low dimensions

Dimensionality Reduction Example

• Isomap: 4096 D to 2D [Tenenbaum 00]

Outline

- Dimensionality Reduction
- Previous Work
- MDSteer Algorithm
- Results and Future Work

Previous Work

- MDS: iterative spring model (infovis) - [Chalmers 96, Morrison 02, Morrison 03]
 - [Amenta 02]
- eigensolving (machine learning)
 - Isomap [Tenenbaum 00], LLE [Roweis 00]

 - charting [Brand 02]– Laplacian Eigenmaps [Belkin 03]
- many other approaches
 - self-organizing maps [Kohonen 95]
 - PCA, factor analysis, projection pursuit

Faster Spring Model [Chalmers 96] • compare distances only with a few points – maintain small local neighborhood set

Faster Spring Model [Chalmers 96]

- compare distances only with a few points
 maintain small local neighborhood set
 - each time pick some randoms, swap in if closer

Faster Spring Model [Chalmers 96]

- compare distances only with a few points
 maintain small local neighborhood set
 - each time pick some randoms, swap in if closer
- small constant: 6 locals, 3 randoms typical – O(n) iteration, O(n²) algorithm

Parent Finding [Morrison 2002, 2003] lay out a root(n) subset with [Chalmers 96] for all remaining points find "parent": laid-out point closest in high D place point close to this parent O(n^{5/4}) algorithm

Scalability Limitations

- high cardinality and high dimensionality: still slow
 motivating dataset: 120K points, 300 dimensions
 - most existing software could not handle at all
- 2 hours to compute with O(n^{5/4}) HIVE [Ross 03] • real-world need: exploring huge datasets
- last year's questioner wanted tools for millions of points
- strategy
 - start interactive exploration immediately · progressive layout
 - concentrate computational resources in interesting areas steerability
 - often partial layout is adequate for task

Outline

- Dimensionality Reduction
- Previous Work
- MDSteer Algorithm
- Results and Future Work

Algorithm Outline lay out initial subset of points

- lay out some points in active bins
 - precise placement of some

subdivide bins, rebin all points

- coarse placement of all
- gradually refined to smaller regions

loop {

Bins

- incremental computation
 - unplaced points partitioned
- cheap estimate of final position, refine over time interaction
- user activates screen-space regions of interest
- steerability
 - only run MDS on placed points in active bins
- · partition work into equal units
- roughly constant number of points per bin
 - as more points added, bins subdivided

Rebinning

- find min and max representative points - alternate between horizontal and vertical
- split bin halfway between them
- rebin placed points: lowD distance from reps
- rebin unplaced points: highD distance from reps

Recursive Subdivision

• start with single top bin - contains initial root(n) set of placed points · subdivide when each new subset placed

Irregular Structure

- split based on screen-space point locations - only split if point count above threshold

Steerability

- approximate partitioning
 - point destined for bin A may be in bin B's unplaced set
 - will not be placed unless B is activated
- allocation of computation time
 - user-directed: MDS placement in activated areas
 - general: rebinning of all points to refine partitions
 - rebinning cost grows with
 dimensionality
 cardinality
- traditional behavior possible, just select all bins

Algorithm Loop Details

until all points in selected bins are placed {
 add sampleSize points from selected bins
 until stress stops shrinking {
 for all points in selected bins {
 run [Chalmers96] iteration
 calculate stress } }
 divide all bins in half
 rebin all points }

Outline

- Dimensionality Reduction
- Previous Work
- MDSteer Algorithm
- Results and Future Work

Contributions

- first steerable MDS algorithm
 progressive layout allows immediate exploration
 - allocate computational resources in lowD space

Future Work

- fully progressive
 - gradual binning
- automatic expansion of active area
- dynamic/streaming data
- steerability
 - find best way to steer
 - steerable eigensolvers?
- manifold finding

Acknowledgements

- datasets
- Envision, SDRI• discussions
 - Katherine St. John, Nina Amenta, Nando de Freitas
- technical writing
 Ciaran Llachlan Leavitt
- funding

 GEOIDE NCE (GEOmatics for Informed DEcisions)