Visualization Analysis \& Design for Biology

Tamara Munzner Department of Computer Science
University of British Columbia

Why use an external representation?

- external representation: replace cognition with perception $\begin{gathered}\text { Expession colorsacin }\end{gathered}$
$\begin{array}{lll} \\ & \text { Expession colors sale } \\ \\ 2.5 & 0.5 & 2.5\end{array}$

Outline

- introduction
- Cerebral
- Treejuxtaposer
- MizBee
- wrapup

Defining visualization (vis)
vis: application area of computer graphics - biology: application area of vis

Computer-based visualization systems provide visual representations of datasets
designed to help people carry out tasks more effectively.

Why have a human in the loop?
Computer-basedviculization systems provide visual representations of datasets
designed to hel people arry out tasks more effectively. Vistalization is suitable when there is an need to augment human capabilities
rather hhan replace people with computational decision-making methods.

- many analysis problems ill-specified, not clear what questions to ask in advanc - many analysis problems ill-specified, not clear what questions to ask in ad
-don't need vis when fully automatic solution exists and is trusted - don't need vis when fully automatic solution exists and is trusted

Anscombe's Quartet	
Identical statistics	
\times mean ${ }^{9}$	\cdots
x variance 10 y mean 8	
y variance ${ }^{\text {a }}$	\% \ldots
x/y correation	

Why analyze? Jis susage can beanalyzed in terms of what data is shown, why the user needs it, and how the diom is designed.
 - and how the diom
 - abstractio
 ranslate from specifics of domain to vocibulary of vis

 d data into form useful for task
 - idioms
 -visual encoding idiom: how to draw

- analysis framework: scaffold to think systematically about design space - huge, and most possibilities ineffective for particular task/data combination

- automatic layout similar to hand-drawn diagrams automatic layout similar to hand-drawn diagrams
-vertical compartment according to subcellular location atribute

What: Data abstraction	\rightarrow Networks
- dataset types	
- network	

- network
- nodes: genes $\stackrel{-}{-}$ links
$\stackrel{-}{- \text { quantitative atrributes }}$
- guantitative atreriutes
- gexe expersion levelit for
expermanal onondioios
experimenal conditio
Categoricial atrributes
-subcelluar location of interaction
- functional groups
$\rightarrow \stackrel{\text { Attribut Types }}{\rightarrow \text { Categorical }}$

How: Idiom design decisions	Facet		
- facet: partition data into multiple views -juxtapose views side by side	(1) Juxtapos		
- same encoding, different data: small multiples			
- nodes in each view colored by expression levelsexperimental condition	© Partio		
	\cdots		
		Date	
	netandum	1 lul on onein	
$\underbrace{25}$	${ }^{\text {mintam }}$	\therefore Oneal	

\rightarrow Tables

