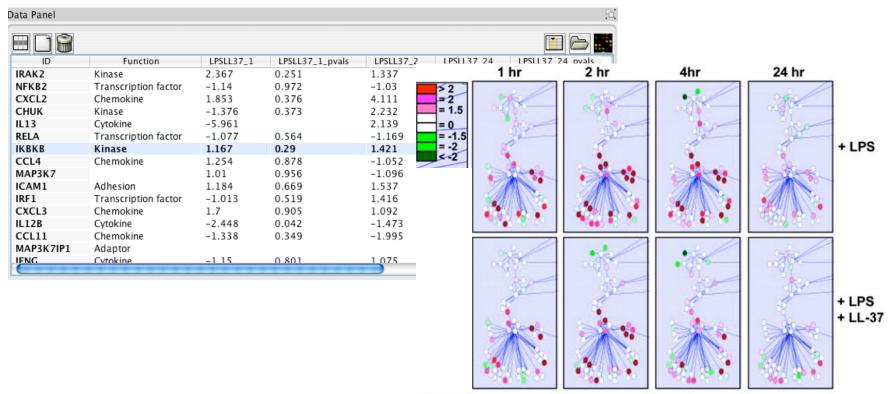
Biology is Destiny: Of Graphs and Genes

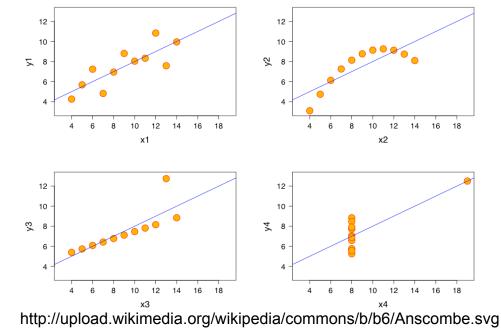

Tamara Munzner Department of Computer Science University of British Columbia

April 2009

http://www.cs.ubc.ca/~tmm/talks.html#amw09

Why do visualization?

- pictures help us think
 - substitute perception for cognition
 - external memory: free up limited cognitive/memory resources for higher-level problems



When should we bother doing vis?

- need a human in the loop
 - augment, not replace, human cognition
 - for problems that cannot be (completely) automated
- simple summary not adequate
 - statistics may not adequately characterize complexity of dataset distribution

Anscombe's quartet: same

- mean
- variance
- correlation coefficient
- linear regression line

What does visualization allow?

- discovery vs. confirmation
 - discovering new things
 - hypothesis discovery, "eureka moment"
 - confirming conjectured things
 - hypothesis confirmation
 - contradicting conjectured things
 - especially (inevitably?) data cleansing
- discovery vs. speedup
 - novel capabilities
 - tool supports fundamentally new operations
 - speedup
 - tool accelerates workflow (most common!)

Good driving problems for vis research

- need for humans in the loop
- big data
- reasonably clear questions
- many areas of science are a great match
 - biology particularly appealing

Cerebral

collaboration with researchers at UBC Hancock Lab studying innate immunity

Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context

Aaron Barsky, Computer Science, UBC

Tamara Munzner, Computer Science, UBC

Jennifer Gardy, Microbiology and Immunology, UBC

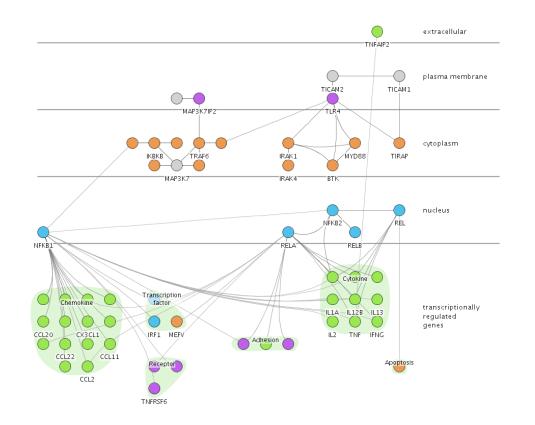
Robert Kincaid, Agilent Technologies

IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2008) 14(6) (Nov-Dec) 2008, p 1253-1260.

http://www.cs.ubc.ca/labs/imager/tr/2008/cerebral/

http://www.cs.ubc.ca/labs/imager/th/2008/BarskyMscThesis/

open-source software download (Cytoscape plugin)

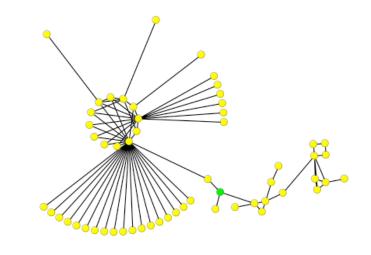

http://www.pathogenomics.ca/cerebral/

deployed in InnateDB (mammalian innate immunity database)

http://www.innatedb.ca

Systems biology model

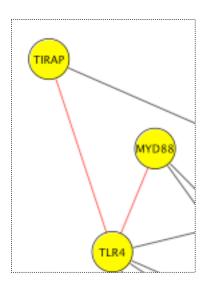
- graph G = {V, E}
 - -V: proteins, genes, DNA, RNA, tRNA, etc.
 - E: interacting molecules



Model - Experiment cycle

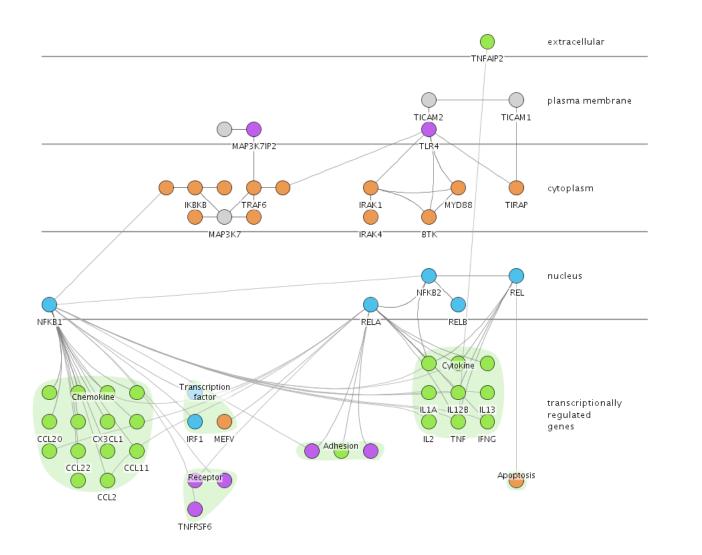
- conduct experiments on cells
- interpret results in current graph model
- propose modifications to refine model
- vis tool to accelerate workflow?

Goal: Integrate model with measurements

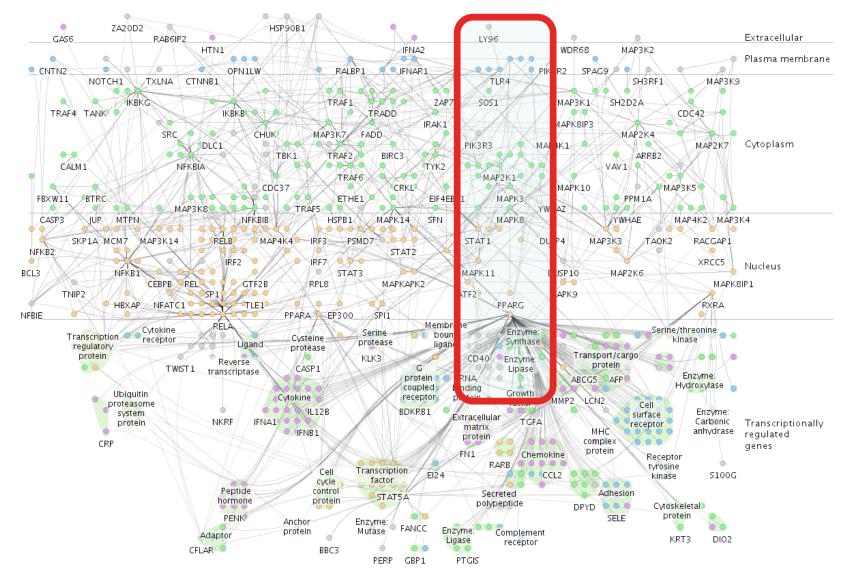

- system model
 - interaction graph
 G = {V, E}
 - meta-data for each v in V
 - labels, biological attributes
- experimental measurements
 - multiple floats for each v in V
 - microarray data

ata Panel			^			
ID	Function	LPSLL37_1	LPSLL37_1_pvals	LPSLL37_2	LPSLL37_24	LPSLL37_24_pvals
IRAK2	Kinase	2.367	0.251	1.337	-1.553	
NFKB2	Transcription factor	-1.14	0.972	-1.03	1.303	0.807
CXCL2	Chemokine	1.853	0.376	4.111	-1.019	0.745
СНИК	Kinase	-1.376	0.373	2.232	1.194	0.387
L13	Cytokine	-5.961		2.139	-1.236	0.601
RELA	Transcription factor	-1.077	0.564	-1.169	1.943	0.594
КВКВ	Kinase	1.167	0.29	1.421	-1.907	0.286
CCL4	Chemokine	1.254	0.878	-1.052	1.499	0.761
MAP3K7		1.01	0.956	-1.096	1.222	0.8
CAM1	Adhesion	1.184	0.669	1.537	1.392	0.671
RF1	Transcription factor	-1.013	0.519	1.416	1.081	0.995
CXCL3	Chemokine	1.7	0.905	1.092	-1.598	0.521
L12B	Cytokine	-2.448	0.042	-1.473	-2.109	0.08
CL11	Chemokine	-1.338	0.349	-1.995	-1.785	0.129
MAP3K7IP1	Adaptor					
ENG	Cytokine	-1.15	0.801	1 0 7 5	1.053	0.521

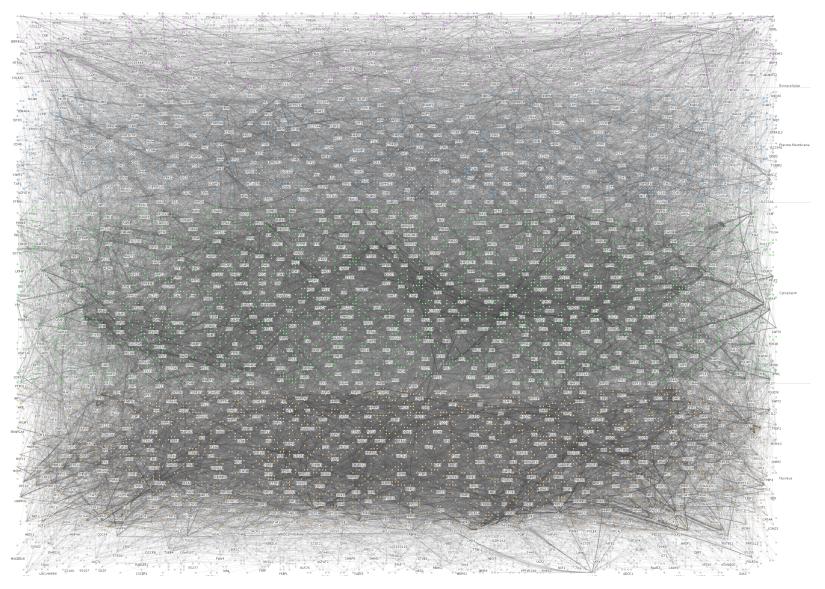
Model summarizes extensive lab work


- graphs come from hand-curated databases
 - dynamic, change with each new publication
- each edge has provenance from experimental evidence
 - TIRAP: an adapter molecule in the Toll signaling pathway. Horng T, Barton GM, Medzhitov R.
 - Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. *Fitzgerald KA*, *Palsson-McDermott EM*, *Bowie AG*, *Jefferies CA*, *Mansell AS*, *Brady G*, *Brint E*, *Dunne A*, *Gray P*, *Harte MT*, *McMurray D*, *Smith DE*, *Sims JE*, *Bird TA*, *O'Neill LA*.

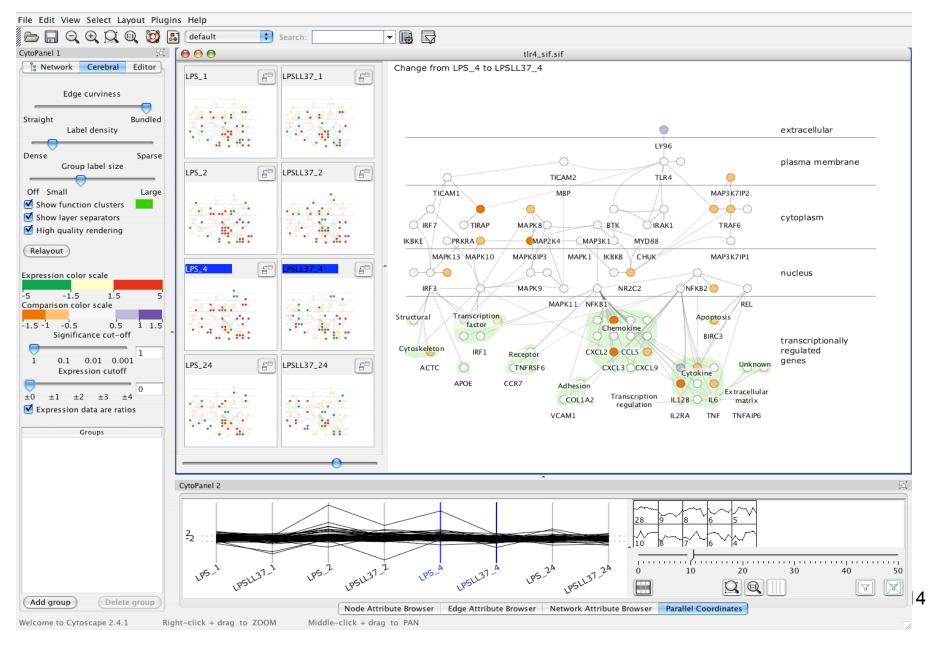
• choose scope for problem complexity


TLR4 biomolecule: E=74, V=54

very local view

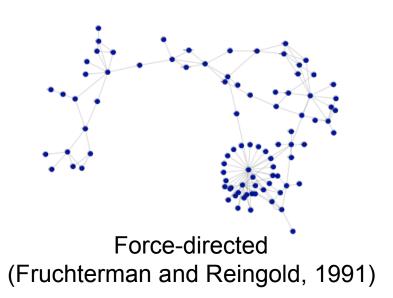


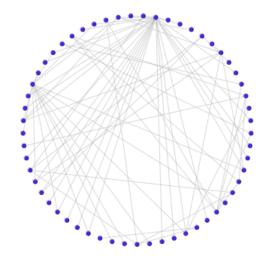
Immune system: E=1263, V=760


bigger picture, target size for Cerebral

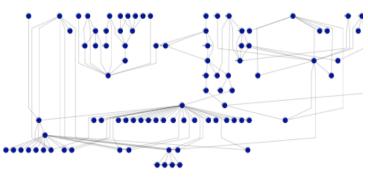
Human interactome: E~50,000, V~10,000too complex, beyond scope of tool

Cerebral video




Encoding and interaction design decisions

- create custom graph layout
 - guided by biological metadata
- use small multiple views
 - one view per experimental condition
- show measured data in graph context
 - not in isolation


Choice 1: Create custom graph layout

- graph layout heavily studied
 - given graph G={V,E},
 create layout in 2D/3D plane
 - hundreds of papers
 - annual Graph Drawing conf.

Circular (Six and Tollis, 1999)

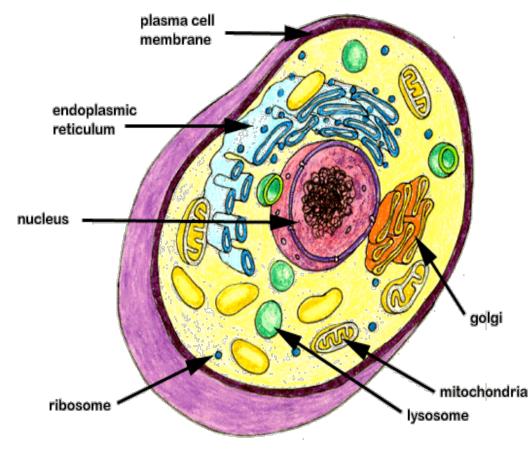
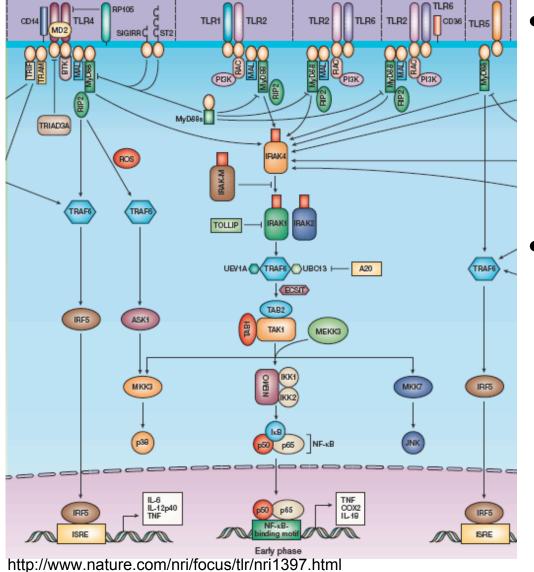
Hierarchical (Sugiyama 1989)

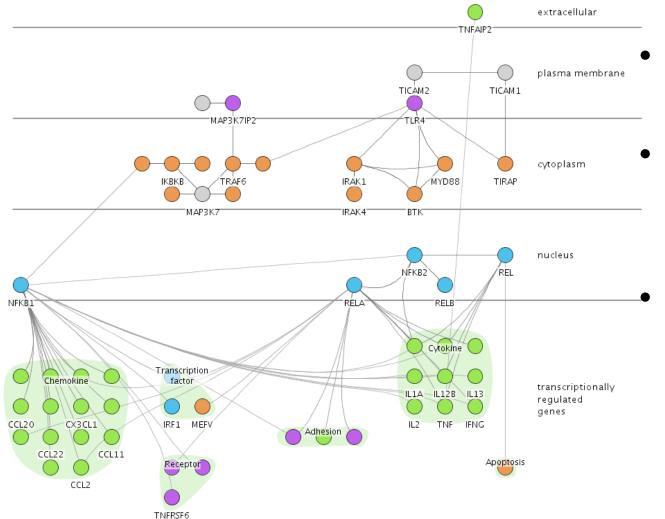
Existing layouts did not suit immunologists

- graph drawing goals
 - visualize graph structure
- biologist goals
 - visualize biological knowledge
 - some relationships happen to form a graph
 - cell location also relevant

Biological cells divided by membranes

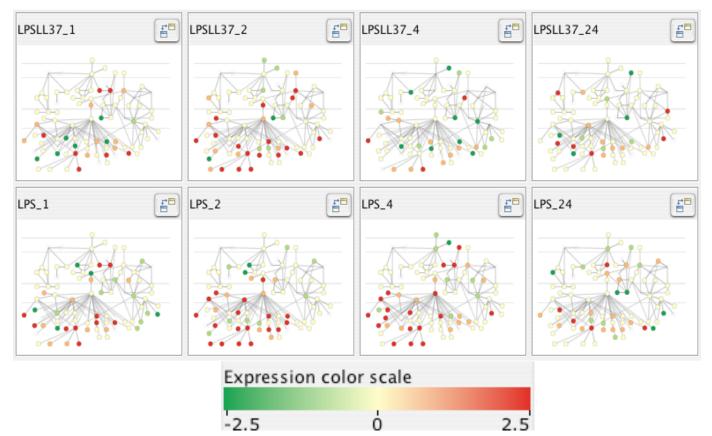
- interactions generally occur within a compartment
- interaction location often known as part of model

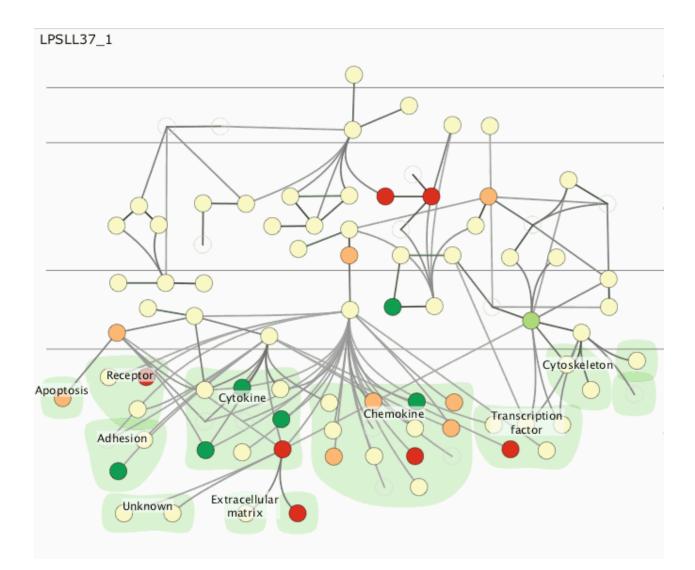

Image credit: Dr.G Weaver, Colorado University at Denver

Hand-drawn diagrams

- cellular location spatially encoded vertically
- infeasible to create by hand in era of big data


Cerebral layout using biological metadata

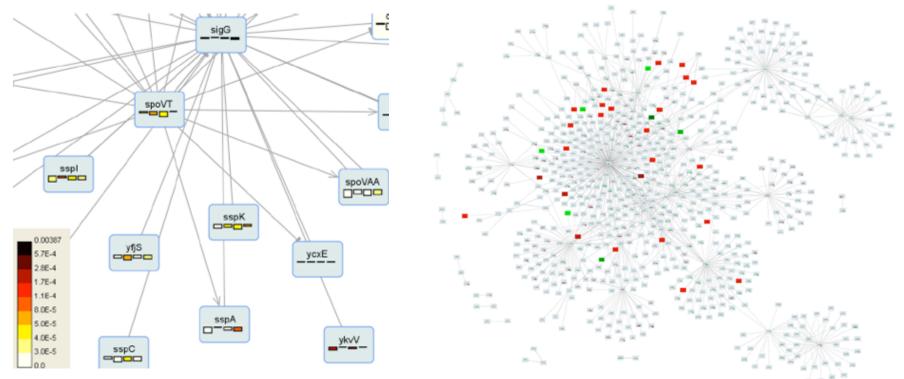
- similar to handdrawn
- spatial position
 reveals
 location in cell
 - simulated annealing in O(E√V) vs. O(V³) time


Choice 2: Use small multiple views

- one graph instance per experimental condition
 - same spatial layout
 - color differently, by condition

Why not animation?

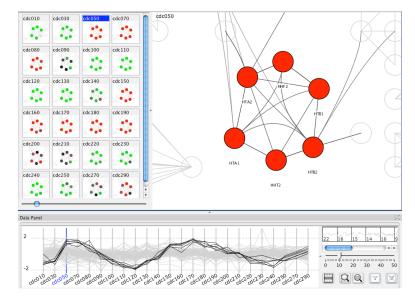
• global comparison difficult



Why not animation?

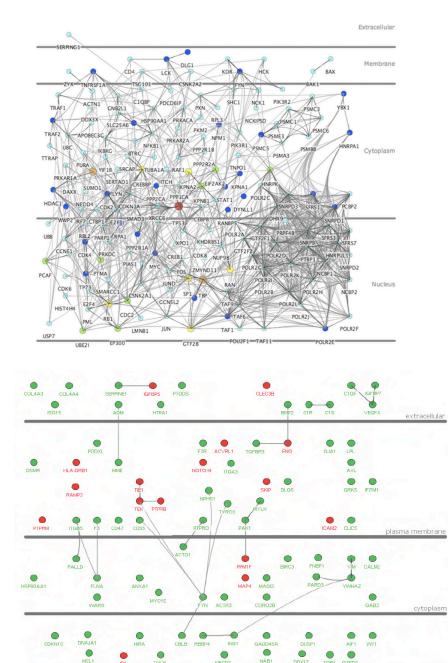
- limits of human visual memory
 - compared to side by side visual comparison
- Zooming versus multiple window interfaces: Cognitive costs of visual comparisons. Matthew Plumlee and Colin Ware. *ACM Trans. Computer-Human Interaction (ToCHI)*,13(2):179-209, 2006.
- Animation: can it facilitate? Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. *International Journal of Human-Computer Studies*, 57(4):247-262, 2002.
- Effectiveness of Animation in Trend Visualization. George Robertson, Roland Fernandez, Danyel Fisher, Bongshin Lee, John Stasko. IEEE Trans. Visualization and Computer Graphics 14(6):1325-1332 (Proc. InfoVis 08), 2008.

Why not glyphs?


- embed multiple conditions as a chart inside node
- clearly visible when zoomed in
- but cannot see from global view
 - only one value shown in overview

[M. A. Westenberg, S. A. F. T. van Hijum, O. P. Kuipers, J. B. T. M. Roerdink. Visualizing Genome Expression and Regulatory 24 Network Dynamics in Genomic and Metabolic Context. Computer Graphics Forum, 27(3):887-894, 2008.]

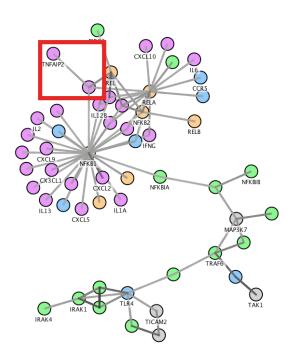
Choice 3: Show measurements and graph

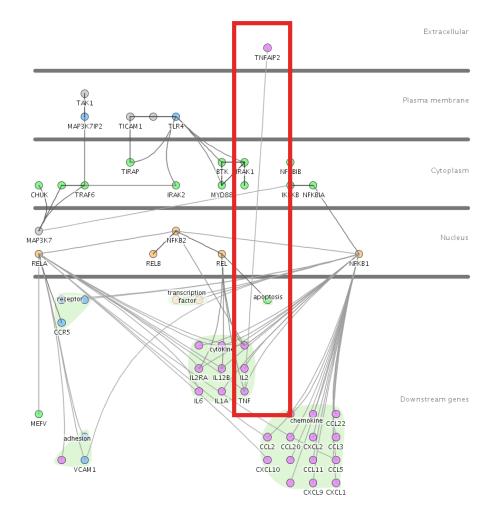

- why not measurements alone?
 - data driven hypothesis: gene expression clusters indicate similar function in cell?
- clusters are often untrustworthy artifacts!
 - noisy data: different clustering alg.
 — different results
 - measured data alone potentially misleading
 - show in context of graph model

Adoption by biologists

 Matthew D Dyer, T. M Murali, and Bruno W Sobral. The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathogens, 4(2):e32, 2008.

 Liqun He et al. The glomerular transcriptome and a predicted proteinprotein interaction network. Journal of the American Society of Nephrology, 19(2):260-268, 2008.


InnateDB links to Cerebral


- InnateDB: facilitating systems-level analyses of the mammalian innate immune response
 - David J Lynn, Geoffrey L Winsor, Calvin Chan, Nicolas Richard, Matthew R Laird, Aaron Barsky, Jennifer L Gardy, Fiona M Roche, Timothy H W Chan, Naisha Shah, Raymond Lo, Misbah Naseer, Jaimmie Que, Melissa Yau, Michael Acab, Dan Tulpan, Matthew D Whiteside, Avinash Chikatamarla, Bernadette Mah, Tamara Munzner, Karsten Hokamp, Robert E W Hancock, Fiona S L Brinkman. Molecular Systems Biology 2008; 4:218
 - <u>http://innatedb.ca</u>

	InnateDB A Knowledge Resource For Innate Immunity Interactions & Pathways													
	Home About Sea	arch Browse Download	Resources	Statistics Conta	ict Help									
	Display Options (Show/Hide)													
Sorted by: Interaction Type 💙 ascending 💙 then by Group ID 💙 ascending 💙 Sort														
Click here to show redundant inter tions Download XML TAB MS Excel CSV SIF Visualize Cerebral (?) Viewing interactions 41 to 60 of 857 hits matching query (Pathway name: ' luman) TNF-alpha Signal g Pathway [816]') Page(s): [Prev] 1 2 3 4 5 6 7 8 9 10 [Next]														
Group ID	Interaction	Interactors	Species	Interaction level	Interaction type	Supporting Publications								
40322	CHUK interacts with MAP3K14	CHUK :: MAP3K14	Homo sapiens	direct interaction	phosphorylation	2	Interaction Details							
42332	Phoshporylation of NFKBIA by IKBKB	IKBKB :: NFKBIA	Homo sapiens	direct interaction	phosphorylation	3	Interaction Details							
42333	Phoshporylation of NFKBIA by CHUK	CHUK :: NFKBIA	Homo sapiens	direct interaction	phosphorylation	3	Interaction Details							
42345	IKBKB interacts with NFKBIA	IKBKB :: NFKBIA	Homo sapiens	direct interaction	phosphorylation	11	Interaction Details							
42346	CSNK2A1 phosphorylates NFKBIA(IKB alpha)	CSNK2A1P/CSNK2A1 :: NFKBIA	Homo sapiens	direct interaction	phosphorylation	1	Interaction Details							
42347	CHUK interacts with NFKBIA	CHUK :: NFKBIA	Homo sapiens	direct interaction	phosphorylation	10	Interaction Details							
42348	IKBKG interacts with NFKBIA	IKBKG :: NFKBIA	Homo sapiens	direct interaction	phosphorylation	1	Interaction Details							
44310	IKBKE phosphorylates NFKBIA(IKB alpha)	IKBKE :: NFKBIA	Homo sapiens	direct interaction	phosphorylation	1	Interaction Details							
44678	IKBKB interacts with IKBKB	IKBKB :: IKBKB	Homo sapiens	direct interaction	phosphorylation	2	Interaction Details							
44680	IKBKB (complex)	IKBKB	Homo sapiens	direct interaction	phosphorylation	3	Internetica Dataila							
44080				direct interaction			Interaction Details							
44680	Phoshporylation of RELA by IKBKB	IKBKB :: RELA	Homo sapiens	direct interaction	phosphorylation	1	Interaction Details							

Data cleansing example

- incorrect edge across many compartments
 - in well studied dataset
 - not obvious with other layouts

Cerebral summary

- supports interactive exploration of multiple experimental conditions in graph context
- provides familiar representation by using biological metadata to guide graph layout

More information

• this talk

http://www.cs.ubc.ca/~tmm/talks.html#amw09

- papers, videos <u>http://www.cs.ubc.ca/~tmm</u>
- software

http://www.pathogenomics.ca/cerebral

http://www.innatedb.ca