
Mylog: A Visualization For Mylar Log Data

Shawn Minto

The University Of British Columbia

ABSTRACT
Software systems use text based log files for many different

applications, such as monitoring events, or in the case of a
research setting, capturing the usage data from a user study. The
downfall with these text based log files is that even if they are
well structured (using XML or the similar), they are difficult to
read and even more difficult to get meaningful information from.
To help extract information, scripts are normally written, but this
can be a difficult task. Also, the output from these scripts is
normally text based and therefore they can only continue provide
limited information. Mylog solves these problems by visualizing
log data and presenting it to the users graphically. Mylog reduces
the time to analyze the log files since it produces instant feedback
on parameter choices and the user is able to have an increased
confidence that the visualization returned the information that
they were looking for. Also, Mylog allows further inspection
after the data in question has been found.

1 INTRODUCTION
Programmers often utilize Integrated Development

Environments (IDE) to search for and analyze places of interest in
a programming project. The shortcoming of IDE’s is that they
present the entire structure of a system, which can be a burden to
developers performing a simple task since they are concerned
primarily with a small portion of the code. A popular Java
programming IDE is Eclipse1 from IBM2. A tool to assist
developers with the dilemma of information overload is called
Mylar3. Mylar is an Eclipse plug-in that helps users focus on their
current task by only showing the structure that is relevant to them
currently [4]. Mylar was developed in the Software Practices Lab
(SPL4) at the University of British Columbia by Mik Kersten and
Gail Murphy. Mylar has since been released on Eclipse.org as a
technology project and is freely available for download.

As part of Kersten’s PhD thesis on Mylar, a user study was

conducted during the summer of 2005. This study involved over
75 real developers from industry using Eclipse with and without
Mylar installed. Over the course of four months, the developers’
usage of Mylar and Eclipse was monitored and collected for
further analysis. The data collected is in an unstructured
extensible markup language (XML5) format and contains rich
information about the developers’ usage. The different types of
events that were logged are selections, edits, command
invocations and preference changes. Each of these events
includes: the type of event, start and end date stamps, the origin of
the event, a string representation of the event, how the event
affected the model in Mylar, and the object that event acted upon.
Figure 1 shows an example of an element in the XML log file.

For privacy considerations, the object that the event involved was
obfuscated, but this data can still be useful when looking at the
events since the object provides context for the event in question.
Since many of these events are generated by a key-stroke or a
mouse-click, large quantities of data are produced and it is
difficult to visually inspect these large log files in text format;
therefore, a visualization of this data would be beneficial for
analysis purposes. This log data is not only beneficial for the
purpose of the Mylar user study, but it provides general usage data
for Eclipse which has yet to be explored and could be used to
enhance Eclipse’s usability.

his
Th
use
de
int
vis
use
his
W
log
ev
lim
tas
Th
the
inf
the

to
lar
Vi
in
am
vis
cu
log
un
suf
cu
ov
the

1 http://www.eclipse.org
2 http://www.ibm.com
3 http://www.eclipse.org/mylar
4 http://www.cs.ubc.ca/labs/spl
5 http://www.w3.org/XML
Figure1: An interaction event in XML

These events are stored in a structure called an interaction
tory. This interaction history is used in two different ways.
e first is to monitor the usage of Mylar and Eclipse during the
r study. This information allows the Mylar developers to

termine the usefulness of their tool, as well as gain an insight
o how Eclipse is used. This is the data that will be used for the
ualization of Mylar log data. The interaction history is also
d by the Mylar tool itself. In this second form, an interaction
tory is associated with each task that the developer defines.
hen a task is active, the events that are generated by a user are
ged, as well as applied to the Mylar model. Using these

ents, Mylar is able to track what the user is doing and therefore
it the display of the structure to items related to the current
k. When a task is deactivated, this interaction history is saved.
is means that if a user reactivates a task, Mylar is able to restore
 state of its model to help users remember important
ormation related to the task and allow them to continue from
 same point that they had left it.

The advantages of visualizations are that users have the ability
quickly identify trends and anomalies in data and easily analyze
ge quantities of data creating an increase in productivity.
sualizations can be used to help represent complex data to assist
building new knowledge. Since Mylar produces such large
ounts of data, it would be more appropriate to explore this data
ually instead of through inspection of the text files. Currently,
stom scripts are being written to attempt to analyze the gathered
 data to determine sequences of events, but this is an

acceptable form of analysis since it is unable to provide
ficient detail. Furthermore, a parser and report generator

rrently exist for this data, but only produce high-level
erviews of the usage and not low-level details that would allow
 exploration of single events and sequences of events.

Currently, some difficult tasks are being performed with the
assistance of custom scripts which provide minimal information to
the user. In a perfect system, it would be ideal if a user could:
easily search for a specific sequence of events, display the usage
of Mylar and filter events to show the frequency of use of a single
command (or sequence of commands) or to remove events that are
not required for the current analysis.

Mylog is a tool developed to visually present and allow analysis

of log files collected from the Mylar user study. Mylog presents
the log file through the use of a sequential layout to maintain
temporal positioning. This tool would be useful for someone who
is analyzing the data collected from the user study to help them
determine the frequency of sequences of events or commands.
Furthermore, since the Mylar user study data also provides
detailed usage information for Eclipse, Mylog would be useful for
exploring how “real” developers use Eclipse. A final
implementation of Mylog would ideally support the ability to
compare multiple log files at one time. This was deemed to be
fairly simple once one log file is visualized, and is therefore
beyond the scope of this paper.

The remainder of this paper provides further detail regarding

Mylog and its implementation. Section 2 discusses the related
work pertaining to the visualization of log data. In Section 3, an
overview of Mylog and its use of information visualization
techniques are given. Section 4 briefly discusses the
implementation of Mylog and Section 5 outlines some scenarios
that Mylog can be used in. Following this, Section 6 is a
discussion on the strengths and weaknesses of Mylog that were
uncovered during development and testing of the system. Finally,
Section 7 discusses some areas of future work to expand the
abilities of Mylog and then the paper concludes.

2 RELATED WORK
The visualization of log data is a limited area of research. The

main areas of interest involve the visualization of internet and
system log data. Both of these topics rely on actual dates and
times to produce their visualizations, therefore putting them in the
category of time-series visualizations. In addition, these areas do
not normally deal with low-level events such as keystrokes, but
higher-level events such as alerts and errors in a system, which
happen much more infrequently.

Gray et al. proposed a solution to low-level interaction data

with a system by providing a calendar based overview [3]. This
method was the original inspiration for Mylog, but it was deemed
that the time that the event occurred was not important for the
purposes of Mylog. The calendar visualization allows for a quick
overview of the usage of a system based on time [3]. Also, Gray
proposed a method of displaying the usage of a system by
producing a visualization on top of the system in question [3].
This idea could not easily be used for Eclipse and Mylar due to
the extensibility of Eclipse. Since there are a huge number of
plug-ins that a user could have installed, it would be very difficult
to attempt this approach.

Another approach to log visualization is the SeeSoft view

proposed by Eick et al [2]. Generally, SeeSoft views are used to
represent data based on the time of their occurrence providing an
overview of what events occurred at what times. This SeeSoft
view is the inspiration for the final Mylog implementation.

Finally, in parallel with the development of Mylog, another
project by Karen Parker was being developed to visualize privacy
information regarding to web browsing [6]. Parker’s visualization
continues to use time as a variable for the layout of the events;
however, in the final presentation of the project, a compressed
view was displayed that was similar to Mylog. The difference
with Mylog is that Parker’s visualization places all of the events,
regardless of type, into a single line. This is reminiscent of a
SeeSoft view and requires the users to identify different events
through the use of color. Also, Parker’s visualization requires a
user to scroll if the data is unable to fit onto the screen, whereas
this is not the case with Mylog.

Mylog differs from current research since the sequence of the

events is the key information not the time of the event like the
current log visualizations. This means that the data cannot be
easily aggregated in dates or times since it can obscure the real
information that an analyst is looking for. Also, Mylog needs to
visualize a large number of data points that are collected due to
low-level events such as key-strokes. Due to these differences,
Mylog was unable to make extensive use of previous research in
the area of log data visualization; therefore, Mylog uses
techniques that are designed for large data sets such as bifocal
lenses and filtering, as well as draws some of the layout
techniques from SeeSoft views.

3 MYLOG
Mylog eases the analysis of Mylar log data through the use of a

visual representation of the log while providing tools so analysts
can gain further knowledge of Mylar and Eclipse usage. The
visualization is created simply by invoking an action within
Eclipse and selecting a set of log files that should be visualized.
Mylog analyzes this log data and provides a visual representation
of it in a separate window as shown in figure 11.

Mylog presents the data in a linear fashion as to retain the

sequential nature of the events in the log file. Since events are
only related based on their sequence in the file, no arcs are
required in the visualization. This also means that there are no
problems with occlusion that needed to be dealt with during the
implementation of this tool. Each node in the visualization
represents either a single event or a group of similar events as
determined by the aggregation algorithm. To make an effective
visualization of this log data, Mylog employs many different
information visualization techniques that are discussed in more
detail below.

3.1 Color
Mylog uses color so that analysts are easily able to determine

the kind of event that each of the rows in the visualization is
showing. The following is a mapping of event to color:

• Command = Gray
• Selection = Blue
• Preference = Cyan
• Edit = Pink

By using color to distinguish the event types, labels for each row
of events did not need to be provided and therefore the screen
real-estate could be effectively used for the visualization. This
proved to be beneficial since text is know to consume valuable
real-estate quickly. To provide this mapping of event color to

 2

event, a legend is provided to the user in the bottom right of the
display for quick reference as can be seen in figure 2.

Figure 2: Mylog legend

To avoid overwhelming the analyst with excessive amounts of

color, nodes are not normally outlined in a different color. Since
the nodes are not outlined, there is no visual separation of the
nodes unless one is brought into focus. When a node is in focus,
its color changes so that the analyst is able to easily determine
what node the details are related to. Mylog supports two different
types of focus: hovering over a node and clicking on a node.
When a node is hovered over with the mouse, it is colored pastel
orange, and when it is left clicked to bring it into focus, it is
colored black. This means that if a node is colored black, the
linked details view contains information about that node.

Also, Color is used to highlight the nodes that belong in a

sequence that was specified by the analyst. When a sequence is
specified by the analyst, that nodes matching this sequence are
highlighted using a red outline. Since color can be preattentively
perceived, the highlighting of sequences in this manner allows the
analysts to quickly perceive of the location and frequency of a
sequence of events in a log.

3.2 Aggregation and Spatial Layout
To make an effective visualization of a large number of nodes,

the use of aggregation as well as a good spatial layout is needed.
It was originally decided that since the data had timestamps, it
could be aggregated and displayed using this information. This
would have meant that the visualization would be required to
display a smaller number of nodes since the data could be
aggregated per day. This was determined to be incorrect since the
time is unimportant and is only used to provide a correct
sequencing of the events.

Mylog aggregates the events to be visualized by combining

similar events into a single node in the sequence. The similarity
of the node is calculated based on all of the attributes for the event
other than the times. This means that the type of event, object
acted on, origin of the event and the string representation of the
event must all be the same and the events must occur sequentially.
Each visualized node adds an extra attribute over the original
event that contains a count of how many events it represents. It
has been found that this can reduce the number of nodes displayed
by about 25% in a large log. Even though a node may represent
multiple events, the nodes size remains constant. Keeping the
node sizes the same was decided upon since aggregation is used to
reduce the size of the visualization, allowing all of the nodes to be

displayed without making them too small. It would be useful if
there was an easy way to represent the number of events that each
node is representing. This was not implemented, and it is thought
that a color gradient (light to dark) for each of the event types
could be used to provide this additional information to the analyst.

Determining the spatial layout of the nodes in Mylog was a

simple task. The only difficulty in the layout of the nodes was
determining the size that each node should be so that the entire log
will fit within the screen bounds. The log data and tasks dictated
that the nodes be laid out in a sequential manner, so the naïve
method would be to put all of the nodes onto a single line like the
SeeSoft view [2]. This method works well with the use of color to
distinguish the nodes, but it becomes more difficult to inspect
since all of the data is clustered on a single line. To avoid this,
each event type was placed in a different row, but the nodes were
still placed sequentially in the horizontal direction (figure 11).
This allows analysts to easily determine how frequently users
jump between different types of events, as well as quickly identify
outliers in a log file. Also, providing this separation allows the
analysts to quickly identify areas of interest if only a certain event
type is of important to them. Since all of the nodes are shown
sequentially, there is no node occlusion as previously mentioned.
Conversely, since they are laid directly one after another, there is
no definitive separation between each of the nodes. This could be
solved by outlining each of the nodes, but as discussed earlier, it
causes visual clutter especially when the nodes are tiny and
therefore was not implemented.

3.3 Focus + Context
In many large visualizations, users need and want to see more

details about a certain area of the visualization while still
maintaining an idea of the overall context of the area that they are
viewing. Some approaches to solve this include bifocal lenses,
fisheye lenses and separate overview and detail windows. Since
Mylog is visualizing massive amounts of data, it is necessary that
the analyst can view details in a section of data while still
maintaining the global context of their position in the log file, so a
good focus + context model is needed.

Mylog uses a bifocal lens to allow users to see detailed

information about a subset of the log while still allowing them to
maintain awareness of what area of the log they are in and what
events are happening around it. This bifocal lens is only
implemented to be unifocal. This means that the vertical direction
of the zoomed portion of the visualization remains constant while
the horizontal portion changes as the user moves their mouse
horizontally as can be seen in figure 12. The lens was
implemented in this manner since the analysts need to be able to
view a node of interest as well as other nodes in its vicinity. By
having the vertical axis remain constant, all nodes in the vicinity
of the node in question are the same size allowing for further
inspection. Also, to ensure that users are able to leave the
visualization while maintaining their current context, the right
mouse button is used as a modifier to enable the movement of the
lens. This means that if an analyst is inspecting the data, then
decides to add a filter or a sequence, their current view will not
change when the mouse is moved.

3.4 Linked Views
Linked views are useful when visualizing data so that more

detailed or other related information can be provided to the user.

 3

Mylog takes advantage of linked views in two ways: a
visualization information section and a node detail section. Both
views are positioned directly underneath of the visualization as
can be seen in figure 12. First, a small section in the bottom
center of the user interface (UI) is used to display information
directly related to the visualization and its current state. In this
section, information, such as, the total number of events and the
number of nodes drawn is displayed to allow the analyst to know
how the aggregation worked. Also, this section shows how many
nodes are currently filtered and how many sequences have been
found in the visualization (figure 3). This data allows the analyst
to get a quick overview and feedback of their actions involving
the filters and the sequence highlighting.

Figure 3: Visualization detail view

Another use of linked views in Mylog is for displaying the

detail of a node. This is very useful since an analyst needs to be
able to view at all of the information that a node represents to
make an informed judgment of what the potential sequences are
and how useful a node is. When a node is in focus, the details of
the event that it represents are displayed in a text box located in
the bottom left of the UI. A text box was used so users are able to
copy details out of it so that they can place them into either a
sequence or a filter. This view displays all of the information that
is contained in the event(s) that the selected node represents, as
well as the number of similar events that are aggregated into that
node (figure 4).

Figure 4: Node detail view

To provide extra detail, tooltips were going to be used when a

node was hovered over with the mouse. This tooltip would have
displayed all of the same information as the linked view, the detail
provided from the XML. This feature was not fully implemented
due to time constraints. This should have been a simple feature to
add, but the tooltip continuously disappeared when the

visualization was refreshed. The Mylog visualization needed to
be refreshed to reflect the current coloring and filtering of the
nodes. If more time was available, the refresh of the visualization
could have been modified to accommodate the use of tooltips by
only refreshing when required and displaying the tooltips after the
refresh had completed.

3.5 Filtering and Highlighting
Filtering is used to help users of a visualization manage its

complexity by removing objects that are not important to them
from the display. On the other hand, highlighting is used to help
users identify their current location and points of interest in the
visualization. Mylog employs both of these techniques to allow
for extensive control over the data set that is being visualized
assisting in the discovery of event sequences and other
information.

First, Mylog has an extensive filtering mechanism to allow

analysts to reduce the clutter of the visualization. This reduction
can either be done using an inclusion or exclusion filter. The
inclusion filter shows only the elements that meet the filters
criteria. This means that an analyst can pinpoint events of interest
and determine their frequency of use. Conversely, the exclusion
filter hides nodes that match the filter criteria; therefore, reducing
the clutter by removing unimportant nodes. The filter criterion is
specified on a per attribute basis therefore making it very
powerful. This filter information is specified by the analysts
through a dialog box as shown in figure 5. The information
supplied to the filter is used to either hide or only show the nodes
that match. Matching is done based on whether the attribute of
the node in question contains the specified value. This substring
based matching makes a powerful filter mechanism.

Hi

orien
curre
conn
deter
node
accor
curre
users
expli
node

 4
ghlighting in Mylog is used in two different ways. The first
ts analysts to their current focus point. The details for the
ntly selected node are displayed in a separate window and a
ection between these need to be made. A selected node is
mined by the user expressing interest by left-clicking on the
. This action will enable the linked views to be updated
dingly. Highlighting is also used for the displaying the
nt node that the mouse cursor is positioned on. This allows
 to determine the node boundaries since they are not
citly defined. Next, highlighting is used in Mylog to display
s that lie in the current sequence that is specified. The

Figure 5: Add filter dialog

sequence is specified using the same mechanism as the filter data
is specified. This highlighting allows users to quickly determine
the frequency and locations of the specified sequence (figure 6
and figure 13). The colors used for highlighting have been
mentioned in Section 3.1.Since the order of the sequence matters,
the sequence list has support for moving the sequence items up
and down the list to quickly change the order of the events.

4 IMPLEMENTATION
Mylog was implemented using Java 5.0 as a single plug-in for

Eclipse. This allows Mylog to use the existing parsers and tools
for the log data that have been implemented in other Mylar plug-
ins. For the visualization, Mylog makes use of the Prefuse
toolkit6 which works with Java and Swing. Prefuse was chosen
because it is a simple to use toolkit that works well with Java.
Prefuse is easy to learn, as well as easily extensible, allowing for
customizations to be added to support the Mylog visualization.
Also, Prefuse is a highly functional toolkit providing many
predefined standard information visualization techniques that can
be used without modification. Mylog’s user interface was built
using Swing, which is an application programming interface
(API) for building UI’s that is distributed with most Java
installations. Both of these toolkits were chosen for their ease of
use to aid in the quick development of Mylog due to the strict
schedule of this project.

Mylog extended only a small number of classes from Prefuse,

allowing for customization of how they behave. The two major
changes were to the layout and to the bifocal lens. A new layout
was created to position the nodes sequentially while taking into
account the size of the screen to adjust the node size, ensuring that
all of the nodes can be visible at one time. The bifocal lens had to
be changed so that the magnification and range of the lens was
dependant on the number of nodes that were being displayed.
Originally, the lens parameters were static, however, it was
discovered that it was not useful since it either made the nodes too
large, or did not magnify at all. The functions that were required
for the lens were determined through performing trials for many
inputs. These trial results were then entered into Microsoft Excel
and graphed to determine the function that should be used. It was
found that the magnification function was an increasing
polynomial function based on the number of nodes on the screen,
and the range of the magnification was a decreasing polynomial
function of the magnification. Also, a filter based on attributes,
the way of determining the color of the node and the focus control
were modified to provide the support that Mylog required. The

functionality for determining sequences was implemented
independently of Prefuse, ensuring that the data is processed
sequentially. Once the sequences were determined, the nodes that
were part of a sequence had an attribute set to inform the
visualization that the node should have a border that is a different
color than the node.

Originally, Mylog was to be developed strictly as a plug-in for

Eclipse since the rest of Mylar and its support tools would be
available. This turned out to be difficult to implement since the
Prefuse uses Swing and Eclipse employs a different library called
the standard widget toolkit (SWT). SWT has a way of integrating
a Swing view into one of its own views, but due to refresh
policies, excessive flickering of the visualization resulted. This
was deemed to be distracting and the UI was extracted and
redeveloped in Swing. To ensure that the existing tools could still
be used, the UI for the visualization is launched from within
Eclipse after the data has been imported.

6 http://prefuse.sourceforge.net

5 RESULTS
Throughout the development of Mylog, some use scenarios

were the driving force for the features that Mylog needed to
provide. These scenarios are presented in the next section. Also,
the performance of the system was informally measured on three
levels and these results are reported in section 5.2.

Figure 6: Sequence highlighting

5.1 Scenarios of Use
Mylog is a tool designed for use while analyzing log data from

Mylar, however not all tasks would benefit from the use of this
visualization. The following are three scenarios of use in which
Mylog would help the Mylar log data analysts.

5.1.1 Frequency of Sequences
The scenario used for driving the development of Mylog was

the ability to display sequences of commands to the analyst.
Displaying these sequences would allow the analyst to quickly
identify if they existed, as well as the frequency and number of
the selected sequence. Currently, to determine sequences in
Mylar usage data, custom scripts are written to parse the log files.
The problem with using scripts is that they are difficult to write
and even more difficult ensure that they are correct. These scripts
consume much of the analysts’ time and therefore decrease their
productivity. Another drawback to using scripts is that they can
only provide limited information, such as, the number of
sequences, or even worse, another file containing all of the related
sequences so that detailed information can be provided. Other
problems with scripts are that small changes in a sequence require
reprocessing all of the log data and a lack of contextual
information for the sequences, such as, location in the file.

Sequences of events are important for the analysts of this data,

as well as designers of Eclipse and Mylar. If certain commands
are always or almost always performed together, it would be
beneficial to either place them near each other or combine them
into a single action. This redesign of the actions would benefit the
developers using the system by reducing the number of
commands that they must invoke to complete the task that they
are interested in. An example of this is if the actions of

 5

refactoring7 a class to have a different name and moving the file to
a new package were commonly performed together. If this were
the case, it would be beneficial for Eclipse to support specifying a
new location when the refactoring command is invoked on a file.

Mylog allows the analyst to enter a number of events that they

are significant into a list that represents a sequence. This method
allows the sequences to be preattentively processed through the
use of colored highlighting as previously described in section 3.1.
An additional benefit to the visualization of these sequences is
that if the analyst modifies the sequence that they are interested in,
instant feedback is provided. This instant feedback allows
analysts to quickly determine if the sequence that they are
concerned with exists, or if their modification was correct. Also,
since the highlighting of a sequence does not hide nodes, the
analysts are able to view the contextual information around them,
such as, location in the log file and other interactions that exist
around the sequence. The only downfall to the analysis of
sequences in Mylog is that the analysts must still use predisposed
knowledge to determine what sequences of interest.

5.1.2 Command Usage
Another excellent use of Mylog is to determine command

usage. The usage of a command could include the number of
times that it was used, the frequency that it occurs in the log or
even the distribution of its use within the log (only used in clusters
or evenly dispersed). Currently, grep8 could be used to count the
number of occurrences and even compute the frequency, but yet
again, this is time consuming and does not allow for quick,
preattentive display. Also, it is difficult to determine the
distribution of the usage of the event in question. This can help
with the analysis of the usefulness of the log file (as will be
discussed in the next section) or whether specific functionality is
utilized. This information would benefit a developer of Eclipse or
Mylar because if a command is not used, it could be removed
from the application since it is a dead feature. Also, if a command
is always used in clusters, the developers could attempt to identify
a way to easily invoke the action multiple times sequentially,
therefore improving Eclipse or Mylar to assist their respective
users.

Mylog easily supports this through the use of either the

sequences or the inclusion filter. First, an analyst could enter a
sequence of one event into Mylog. This would cause each of the
events to be highlighted for further analysis. This method allows
the analyst to maintain the context of the surrounding events while
investigating the usage of the command in question. The
sequence method would be most useful in determining how a
command is used and what events are performed around it. In
contrast, by creating an inclusion filter with the command in
question, all other events are removed from the screen. This
method quickly allows the analyst to discover the frequency of
use and its distribution within the log file. This method reduces
the visual clutter that is evident when creating a sequence;
therefore, making it simpler for quick analysis.

7 Refactoring is the process of modifying a class and all

of its references together to maintain code consistency.
This means that when a file or method is renamed,
compilation errors are avoided and the program behaves the
same.

8 http://www.gnu.org/software/grep/grep.html

5.1.3 Usefulness of Logs for Further Analysis
While developing Mylog and analyzing log files for testing

purposes, it was discovered that Mylog is well suited to assist in
determining the usefulness of a log for further analysis. This
measure of usefulness is needed since Mylar log data was not
collected in a controlled setting like most user studies, but rather
many “real” developers used it in their everyday programming
situations. Since the study was not controlled, it is difficult to
determine whether the information contained in the logs are useful
for further analysis to determine the usability of Mylar. Currently,
log files are discarded if there are not a certain number of events
and if Mylar was not used sufficiently. These cutoff numbers are
hard coded into the different report generators within Mylar. The
current way of determining whether to keep or discard log files
can make incorrect choices due to its lack of information;
therefore, it would be greatly useful if there was a means of
visually inspecting the files to determine if they suit the needs of
the analyst, therefore producing better analytical results.

Mylog can be applied in many ways to determine the usefulness

of a log file. The first is through a quick visual inspection of the
file. During development, a log file was found that contained few
edits or selections, but many command invocations. Normally,
logs have a relatively even distribution of edits, selections and
command invocations. It was found that the log was a developer
debugging an application since all of the commands were related
to this type of task. Even if this log passes all of the current tests
of the number of events and command invocations, it would not
be a useful log for analyzing if the analysts interests deal with
editing a file. Also, it has been found through this process that
some logs contain only commands, and sometimes only one type
of command, next word. This was interesting to discovery since
the number of events was used during the user study to determine
if the user could be promoted to the next phase of the evaluation.
This discovery exhibits that the user had found a way to become
promoted earlier, allowing them to use the tool without providing
the prerequisite usage data.

Finally, Mylog can be used for determining the usefulness of a

log file is through the inspection of command usage. The scenario
of command usage has already been discussed in the previous
section, and will not be discussed further here. Currently, the
Mylar analysts utilize the number of times a specific command is
used to determine if a log is acceptable for further analysis. It has
been determined that this may be incorrect since the command
could occur many times in one location of the log, but the analysts
expect it to be distributed, showing the proper use of Mylar. It is
unknown how many log files this might affect, but it would allow
for better data to be used when visualizing the results of the user
study.

5.2 Performance
Mylog’s performance was gauged by three measures; speed, its

ability to support the required tasks, and the color scheme that was
chosen. The performance of speed was based on two different
factors: the interactivity of the system and the time to load the
visualization. In general, Mylog maintains interactivity for a few
thousand nodes which sounds acceptable, but in reality, log files
can exceed 20,000 events which need to be visualized. With this
many nodes, interactivity is lost and therefore it is difficult to use
the system. Even though the interactivity is lost, Mylog is still
able to allow an analyst to identity sequences and navigate the log

 6

file data with only minor frustration. Next, the time to load the
visualization was analyzed and it was found that this can also be
slow for larger log files. The root of this problem is that the log
data is parsed multiple times, once to get into the system, then
again to aggregate the data and then again to create the graph.
This load time is due to the use of a parser that currently exists for
the data, therefore, if a custom parser was created to import the
data, all of these steps could potentially be completed at once and
the load time of the system would be greatly improved.

Next, the system was evaluated on its ability to perform the

required tasks. Since the system was built with a set of common
tasks in mind, it is able to support them well. An explanation of
these tasks is provided in the previous sections. Also, it was
found that the highlighting of sequences and filtering of nodes is
virtually instantaneous, therefore allowing users to directly see the
impact of their actions on the data set.

Finally, the color scheme was evaluated using VisCheck9 which

is an online tool to simulate three different forms of color
blindness: Deuteranope (a red-green colorblindness), Protanope
(another red-green colorblindness) and Tritanope (a blue-yellow
colorblindness which is rare) [1]. Since 1 in 20 people lack the
ability to see all colors [1], it is very important to design for these
people when creating a visualization that distinguishes
information using color. Screenshots of the color scheme were
taken and uploaded to VisCheck to create images that would be
similar to what a person with each of these forms of
colorblindness would see. It was found that the color scheme was
chosen is favorable for people with any of the three deficits that
were checked. The results of VisCheck can be seen in figures 7 -
10.

6 DISCUSSION
Through the development of Mylog, many lessons were learned

about producing visualizations of large data sets. These lessons
will be discussed further in the next section. Also, Mylog has
both strengths and weaknesses. Some of them are based on the
lack of time to implement them, while others such as performance
are limited by the technology used to create the system. Mylog
has been used to analyze many different log files throughout its
development. These files have ranged in size from small (1000
events) to a large ones (over 20,000 events).

6.1 Lessons Learned
While developing Mylog, several things were discovered about

creating visualizations:

 When creating a visualization that has real users,
many techniques from human computer interaction
should be followed such as gathering task examples
early and involving users in the design of prototypes.
This was evident since the tasks were collected early,
but the prototype was designed without user input and
therefore had to be changed.

 Visualizing sequence data is difficult since there are

very few techniques that can be used to assist with
linear data.

9 http://www.vischeck.com

 Determining how to aggregate data is difficult.

 It is difficult, if not impossible, to be able to display
tens of thousands of nodes while sill maintaining
interactivity when using a toolkit with Java.
Therefore, I now see the need for developing
visualizations using real computer graphics engines
and techniques.

 Color schemes are difficult to determine especially

when items are highlighted and therefore two colors
must interact well to draw a user’s attention, while
still supporting color blindness.

 When there are multiple attributes that can help

specify a node, it is difficult to determine structures
that allow for quick access to the nodes, while
maintaining low memory usage.

 Making a visualization portable is an ambitious

problem since much of it depends on both the UI
toolkit as well as the visualization toolkit used.

 If a user requests a visualization of some data, there is

no guarantee that it will actually get used.

6.2 Strengths and Weaknesses
Mylog is a prototype visualization tool for Mylar log data and

provides excellent support for viewing an overview of a user’s
interaction, as well as quickly identifying locations where a
specified sequence has occurred. Since Mylog is a prototype, it
does have some weaknesses, such as, the potential for clutter due
to the large number of nodes being displayed, and there is no way
of automatically determining sequences in the data. The
following two sections will discuss these strengths and
weaknesses further.

6.2.1 Weaknesses
Mylog is not a perfect tool, and has some weaknesses

associated with it. The two major weaknesses are the potential for
screen clutter and the limited use of humans’ perceptual abilities.
Also, Performance is a weakness of the system but it has already
been discussed in Section 5.2 so there will be no more detail on it
in this section.

The first limitation of Mylog is that there can be excessive

screen clutter. This is directly related to the data that is being
visualized along with the aggregation support that is implemented.
Since there is a large amount of linear data, it is difficult to place
it on the screen in a meaningful manner while maintaining a clean
UI. This could be solved by using a different aggregation
technique or determining a better way of displaying the nodes in a
meaningful manner. In this project, a naive aggregation was used,
and it was found to reduce the number of nodes displayed by up to
25%, but a better aggregation technique would reduce the number
further.

The second major drawback is that there is limited use of a

human’s ability to preattentively process information. Currently,
the nodes are laid out based on their location in the sequence of
events and the type of event that occurred. This means that the
analyst can only identify outliers or anomalies in the log (such as

 7

one type of event occurring infrequently) quickly. In addition, if a
sequence is input, users are quickly able to determine the
locations and frequency of it, but this requires knowledge of what
they are looking for. To exploit this preattentive ability directly
on startup of the visualization, it would be beneficial to preprocess
the data using heuristics to attempt to determine common
sequences of events.

Finally, many tasks, especially when looking for sequences,

require knowledge of the surrounding nodes which is not
supported. Currently, Mylog only supports the selection of a
single event for inspection, meaning that if multiple nodes are to
be examined, they must be selected one at a time and their data
either be remembered or saved in an external location for later
use. A better approach would be to allow the selection of multiple
events in a range and display their details together so that the
analyst would be able to gain further knowledge of the sequence
that they are looking at.

6.2.2 Strengths
Even though Mylog has some limitations as outlined in the

previous section, it supports the common tasks that are currently
done through the use of custom scripts and visual inspection of
the log files. Since Mylog visualizes this data, it is easier to
inspect the files as well as view sequences of data along with their
location in the overall structure of the log. Mylog has three main
strengths: the ability to quickly identify specified sequences, the
ability to view the entire log file, and a powerful filter and
sequence search.

The first main strength is that once a user specifies a sequence

that they are interested in, they are quickly able to determine its
locations, as well as, the number of them. The location and the
general frequency of a sequence is easily picked out by users due
to preattentive processing through the use of highlighting. This
means that users are able to quickly determine the location of a
selected sequence without doing extensive inspection since these
sequences are highlighted.

The second asset of Mylog is that it is able to display an entire

log file to a user while still maintaining the ability to gain detail
about a single event. This is a great improvement over the current
method of inspecting the log files since only a small subset of the
information can be displayed and it is difficult to get an idea of
what the overall structure of the log is. Mylog provides an
overview of the entire log file allowing the analyst to quickly
identify outliers of events or anomalies. One such anomaly
discovered is that a log file that was visualized did not have any
edits or selections for the most of the log. This would have been
very difficult to determine from the log file directly, and therefore
the analyst is able to infer what the user was doing, or if there was
a potential problem with Mylar. Finally, an overview is not useful
on its own since the events contained in the log are of real
importance. Mylog allows users to gain further detail about these
events. First of all, Mylog provides a bifocal lens to allow
zooming into a group of nodes for closer inspection of the
patterns. Along with this, a user is able to select a node and the
detail that is provided in the log is displayed so that they can
further understand the usage of the system.

The final core strength with Mylog is its powerful filtering and

sequence capabilities. Both of these are needed to reduce the
complexity of the visualization and highlight important data that

an analyst is interested in. Both the filter and sequence
mechanisms allow users to specify substrings of the data that they
are interested in for any of the fields in the log. This means that a
user is able to create complicated filters and sequences to gain a
better understanding. Furthermore, since the filter supports either
inclusion or exclusion, an analyst is able to simplify their display
by eliminating events that are not important to them or only
displaying events that they care about.

Furthermore, it is very simple to create a visualization using

Mylog. To do this, a user only needs to invoke an action in
Eclipse, and then select the log files that they wish to process.
Files from multiple users can be selected since the filename
specifies the user that the file is for. From here, the log files are
automatically parsed and a separate window is opened to display
the visualization. In this window, the analyst is able to choose the
user that they are interested in and that log file is visualized.

7 FUTURE WORK
To make Mylog a more effective tool for the analysis of Mylar

log files, there are several items that should be implemented. One
of the most important items would be to integrate the visualization
from Mylog into the Eclipse IDE. This would allow the users
analyzing the data to work in one window; therefore, allowing the
integration of their tasks into a single environment. As discussed
earlier, this was originally attempted by putting the Swing-based
visualization from Prefuse into an SWT view, but it caused
flickering which was distracting and unavoidable. To solve this, a
visualization tool like Zest that is being developed at the
University of Victoria could be used since it is developed with
SWT. Zest was unable to be used for this project since it is still
under development and therefore common visualization
techniques like bifocal lenses are not yet supported.

In addition, the visualization of the data could be improved by

determining a better way to aggregate events. Currently, a series
of events is aggregated to a single node if they are the same event
occurring directly one after another. This could be solved by
allowing multiple event types to be aggregated together, such as
edits and selections into one node since it was found that
selections and edits of the same element occur frequently.

Mylog should support viewing multiple log files in a final

implementation. This would be useful so that different logs can
be compared allowing similarities between them to be determined.
Supporting the viewing of multiple log files should be
uncomplicated since the single visualization has already been
produced, but the challenge is how to maximize screen real-estate
for each log so that the details can still be gained. It would be
beneficial in this stage to use heuristics to determine similarities in
the log files and display these similarities in a way like
TreeJuxtaposer [5] presented them. This would allow for quick
comparisons between the log files and the ability to determine
common sequences of events. It would also be beneficial to do
further preprocessing on the log data to automatically determine
potentially interesting sequences of events. This would build the
knowledge of the analyst so that they are better able to determine
the usage of Mylar and Eclipse.

Another item that would be useful is the ability to rearrange the

order of the levels that each of the events are displayed on. This
would be useful since different types of sequences or information
would be able too be determined easier depending on the special

 8

locality of the different types of events. Currently, edit and
selection events are placed next to each other since they occur
together frequently, but this may not be the best way to lay out the
events when looking at certain sequences.

Finally, Mylog should allow users to specify multiple

sequences of interest that are highlighted using different colors.
This would allow an analyst to determine the relationship between
different sequences of events. Also, this would allow for the
persistent highlighting of important events which currently is not
supported since only one sequence is able to be displayed. To
further support this, it would be advantageous if the user is able to
manipulate the color scheme to suit their needs. This would mean
that people with color blindness would be able to choose colors
that support their needs, and users that are not would be able to
select colors to highlight information that is important to them.

8 CONCLUSION
Mylog is a tool that was developed to assist with the analysis of

log file data from the Mylar user study. This tool is partially
integrated in Eclipse and is aimed for people who wish to analyze
the data that has been collected either on Mylar or Eclipse from
this study. Mylog uses the power of visual representations to
reduce the frustration that is incumbent when attempting to
visually inspect log files and write scripts to extract information
from them. Mylog uses many information visualization
techniques such as focus + context, filtering, color and special
layout to help analysts quickly find the information that they are
interested in. Three scenarios were provided to show the
usefulness of Mylog and how it reduces the complexity of
analyzing the log files manually. Mylog still requires some work
to be extensively used for analyzing Mylar log data, but even in
its current state should be a powerful tool for some analysis tasks.

ACKNOWLEDGEMENTS
Gail Murphy for input throughout the project about the
functionality required for analysts of the log data. Kenedee
Ludwar proof read this paper before the final submission as a
sanity and grammar check.

REFERENCES
[1] H. Brettel, “VisCheck”, www.vischeck.com, Stanford University,

2003.

[2] S. G. Eick, et al, “Graphical Analysis of Computer Log Files”,

Communications of the ACM, Vol. 37, No. 12, 1994, pp. 50-56.

[3] M. Gray, et al, “Visualizing Usability Log Data”, IEEE Symposium

on Information Visualization (INFOVIS '96), 1996, pp. 93-98.

[4] M. Kersten, “Mylar Technology Project”, www.eclipse.org/mylar,

2005.

[5] T. Munzner, et al, “TreeJuxtaposer: Scalable Tree Comparison using

Focus+Context with Guaranteed Visibility”, ACM Transactions on
Graphics, Vol. 22, No. 3, pp. 453-462.

[6] K. Parker, “Web Browsing Log Files Analysis”,

http://www.cs.ubc.ca/~tmm/courses/cpsc533c-05-
fall/projects/parker/proposal.html, 2005

 9

Figure7: Original Mylog color scheme.

Figure 9: Deuteranope colorblind color scheme.

Figure 8: Protanope colorblind color scheme.

Figure 10: Tritanope colorblind color scheme.

 10

Figure 11: Mylog

 11

Figure 12: Unifocal lens

 12

Figure 13: Sequence highlighting

 13

	Introduction
	Related Work
	Mylog
	Color
	Aggregation and Spatial Layout
	Focus + Context
	Linked Views
	Filtering and Highlighting

	Implementation
	Results
	Scenarios of Use
	Frequency of Sequences
	Command Usage
	Usefulness of Logs for Further Analysis

	Performance

	Discussion
	Lessons Learned
	Strengths and Weaknesses
	Weaknesses
	Strengths

	Future work
	Conclusion
	Acknowledgements

