Sampling

Week 7, Fri 17 Oct 2003

• p1 demos
• sampling
News

• hw 1 solutions out
 – no more accepted as of right now

• next week
 – Mon: midterm
 • no Mon office hours, I’m away at conferences
 – Wed: Prof. van de Panne on animation
 – Fri: TA Abhijeet Ghosh on textures

• correct p1 grades posted on web site now

• project 1
 – finish hall of fame demos
Point Sampling

- multiply sample grid by image intensity to obtain a discrete set of points, or samples.
Spatial Domain

- image as spatial signal

Examples from Foley, van Dam, Feiner, and Hughes
Spatial Domain: Summing Waves

- represent spatial signal as sum of sine waves (varying frequency and phase shift)
- very commonly used to represent sound “spectrum”
Frequencies: Summing Spikes

\[g(t) = \alpha \sin(\omega t) \]

\[G(f) = \frac{\alpha}{2\pi} \delta(f - \frac{\omega}{2\pi}) \]

\[g(t) = 2 \sin(\omega t) + 0.5 \sin(4\omega t) \]

\[g(t) = \alpha \sin(\omega t) + \alpha \sin(6\omega t) \]

\[f = \frac{\omega}{2\pi} \]

\[f = \frac{\omega}{2\pi}, \frac{\omega}{2\pi}, \frac{\omega}{2\pi}, \frac{\omega}{2\pi} \]
Frequency Domain

- position: frequency
- height: strength of each frequency
 - sine wave: impulse
 - square wave: infinite train of impulses
Fourier Transform Example

spatial domain

frequency domain
Sampling
Sampling Theorem

continuous-time signal can be completely recovered from its samples iff the sampling rate is greater than twice the maximum frequency present in the signal.

- Claude Shannon
Nyquist Rate

- the lower bound on the sampling rate equals twice the highest frequency component in the image’s spectrum
- this lower bound is the Nyquist Rate
Falling Below Nyquist Rate

• when sampling below Nyquist Rate, resulting signal looks like a lower-frequency one
 – this is aliasing!
Flaws with Nyquist Rate

• samples may not align with peaks

Fig. 14.16 Sampling at the Nyquist rate (a) at peaks, (b) between peaks, (c) at zero crossings. (Courtesy of George Wolberg, Columbia University.)
Nyquist Rate

\[f_s < 2f \]

\[f_s = 2f \]

\[f_s > 2f \]
Nyquist and Checkerboards

- point sampled 1D checkerboard: aliases

- unweighted area sample: still have aliasing
Band-limited Signals

• if you know a function contains no components of frequencies higher than x
 – band-limited implies original function will not require any ideal functions with frequencies greater than x
 – facilitates reconstruction
 – avoids Nyquist Limit mistakes

• to lower Nyquist rate, remove high frequencies from image: *low-pass filter*
 – only low frequencies remain: band-limited
Low-Pass Filtering

Original signal

\[\text{Low-pass filtering} \]

Low-pass filtered signal
Low-Pass Filtering

Fig. 14.20 The sampling pipeline with filtering. (Courtesy of George Wolberg, Columbia University.)
Filtering

• low pass
 – blur

• high pass
 – edge finding
Filtering in Spatial Domain

- blurring or averaging pixels together

\[h(x) = f \otimes g = \int f(x)g(x-y)dy \]
Filtering in Frequency Domain

- multiply signal’s spectrum by pulse function
Common Filters

Spatial domain vs. frequency domain
Dualities

- inverse relationship between size
 - T large $\rightarrow 2\pi/T$ small

Spatial domain

Frequency domain

$s(x)$ \rightarrow $S(u)$
Sinc Function

• sinc (pulse) function is common filter:
 – $sinc(x) = \frac{\sin(\pi x)}{\pi x}$
 – infinite in frequency domain
Sampling in Spatial Domain

• Q: what is sampling (i.e. evaluating a continuous function at evenly spaced points)?
• A: multiplication of the sample with a regular train of delta functions (spikes).
Sampling in Frequency Domain

- multiple copies of spectrum
- example: given spectrum $S(\omega)$ of a signal $s(t)$
Sampling in Frequency Domain

• multiple shifted copies of $S(\omega)$ are added up during sampling

• if $2\pi/T$ is large enough (T is small enough)
 – individual spectrum copies do not overlap
 – *depends on maximum frequency* ω_0 in $s(t)$
Sampling in Frequency Domain

- if T is too large ($2\pi/T$ is small), overlap occurs
 - this is aliasing
Undersampling leads to aliasing.

Samples are too close together in f.

Spurious components:
Cause of aliasing.
How do we remove aliasing?

- perfect solution - prefilter with perfect bandpass filter.
How do we remove aliasing?

- perfect solution - prefilter with perfect bandpass filter.
 - difficult/Impossible to do in frequency domain
- convolve with sinc function in space domain
 - optimal filter - better than area sampling.
 - sinc function is infinite !!
 - computationally expensive
How do we remove aliasing?

• cheaper solution: take multiple samples for each pixel and average them together → supersampling.
• can weight them towards the centre → weighted average sampling
• stochastic sampling
• importance sampling

Removing aliasing is called antialiasing
Weighted Sampling

- multiple samples per pixel

![Diagram of weighted sampling with 3x3 and 5x5 Bartlett weights]

<table>
<thead>
<tr>
<th>3x3 Bartlett</th>
<th>5x5 Bartlett</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 1</td>
<td>1 2 3 2 1</td>
</tr>
<tr>
<td>2 4 2</td>
<td>2 4 6 4 2</td>
</tr>
<tr>
<td>1 2 1</td>
<td>3 6 9 6 3</td>
</tr>
<tr>
<td></td>
<td>2 4 6 4 2</td>
</tr>
<tr>
<td></td>
<td>1 2 3 2 1</td>
</tr>
</tbody>
</table>
Stochastic Supersampling

• high frequency noise preferable to aliases
Importance Sampling

equal distribution
unequal weights

unequal distribution
equal weights