REAL-TIME EXPLORATION OF LARGE SPATIOTEMPORAL DATASETS BASED ON ORDER STATISTICS

Original Work By: Cicero Pahins, Nivan Ferreira, and Joao Comba

Presented By: Vaastav Anand
SPATIOTEMPORAL DATASETS

“Datasets generated from measuring a set of values across set of locations (spatial dimension) across a time range (temporal dimension).”

PROBLEM: Dataset is too large to perform interactive analysis.
EXISTING SOLUTIONS

- Precomputed Indices that store aggregations of a given dataset as solutions to this problem.
 - Doesn’t take into account data distribution

- Gaussian Cubes that support interactive data modelling by describing data distribution using parametric Gaussian distributions.
 - Based on non-robust statistics (mean + covariance)
 - Can’t assume real-world data has a normal distribution
PROBLEMS WITH CURRENT SOLUTIONS

- Memory footprint is too high
- Distributions are approximated using non-robust statistics
- Queries are slow enough to disallow interactive experience
- Queries are limited to count queries
QUANTILE DATACUBE STRUCTURE

- A novel data structure
- Encode data distributions based on robust statistics
- Uses a non-parametric modelling technique called p-digest
- A novel indexing structure that reduces the large memory footprint
EXAMPLE QUESTIONS

- “How likely is a flight operated by Delta Airlines to be delayed more than 10 minutes at JFK airport?”
- “How does the distribution of flight delays for two airports compare to each other in the past month?”
- “How unusual are the delays experienced by Delta flights on January 29th, 2017?”
INDEXING SCHEME
“Data Sketch”: Data Structure that can be easily updated with new or modified data and supports a set of queries whose results approximate queries on the full dataset.

An optimized version of t-digest data sketch

- Quantile sketch that supports queries of quantile and cdf estimation.
- Summarizes the empirical cdf of an input dataset by a set of weighted values called centroids.
“Data Sketch”: Data Structure that can be easily updated with new or modified data and supports a set of queries whose results approximate queries on the full dataset.

An optimized version of t-digest data sketch:

- Quantile sketch that supports queries of quantile and cdf estimation.
- Summarizes the empirical cdf of an input dataset by a set of weighted values called centroids.
- Compression Parameter defines the number of centroids.
- Queries for extreme quantiles are made more accurate.
P-DIGEST DATA SKETCH

- “Data Sketch”: Data Structure that can be easily updated with new or modified data and supports a set of queries whose results approximate queries on the full dataset.

- An optimized version of t-digest data sketch
 - Reduce centroid storage from 40-80 bytes per centroid array to at most 8 bytes for each of the centroid and weighted arrays. Stored as single chunk of floats
 - If all weight values are 1 then weights are not stored.
QUERY TYPES

- 3 types
 - Quantile queries
 - CDF queries: Modeled as inverse of quantile queries
 - Pipeline queries: Result of a given query is used as a parameter to another query

Primary Query: **select AGGR from QDR where CONSTRAINTS [group by G]**
QUERY ALGORITHM
QUANTILE HEATMAPS

- Instead of using the mean for a given location, use the specified quantile at the location as the aggregate measure.
- Quantiles are not sensitive to outliers whereas mean is.
- Powered by QDS’s quantile queries.
CDF HEATMAPS

- Instead of showing mean, they show high likely a distribution in a given location is to be smaller than a certain value
- Powered by QDS’s cdf query
Interpreting uncertainty visualizations is not easy.
- Can have high cognitive load
- Viz researchers have idioms to shift the cognitive load
- But existing interactive techniques are not efficient

QDS’s cdf query can allow for this interactivity by computing the result for each box plot.
OUTLIER EXPLORATION

- Finding outliers requires users to inspect a large number of data slices over time and space.
- QDS can retrieve approx. distributions over an arbitrary portion of the data very quickly.
- Authors define an outlierness measure supported by QDS’s pipeline query.
MEMORY FOOTPRINT

- Comparable memory footprint with HashedCubes.
- Better for some datasets, Worse for other datasets
PERFORMANCE

- Measures the performance of count queries.
- QDS is faster than HashedCubes, MonetDB, SQLite, PostgreSQL
- MonetDB, SQLite, PostgreSQL don’t provide effective mechanisms for spatial filtering with temporal and categorical constraints.
P-DIGEST APPROXIMATION ERROR

- The error rate is fairly low for low quantiles, high merges, and low # of elements per pivot
 - More accurate when data broken down into more parts
 - Accurate for small input data
 - Large values of compression parameter better for higher quantile estimation.

- The error measured is the relative error of the estimated quantile to the actual empirical quantile
WHAT-WHY-HOW FRAMEWORK

What?
- Large Static Spatiotemporal datasets

Why?
- Better Memory Footprint
- Quicker Results -> More Interactive exploration
- Robust Metrics + Visualizing Uncertainty

How?
- QDS – New Datastructure for storing indices of spatiotemporal datasets
- New queries that can approximate quantiles + cdf.
STRENGTHS

- Thorough performance eval
 - Good comparisons vs believable baselines
- Built on/Promotes usage of Robust Statistics
- Allows for exploration of uncertainty in datasets.
WEAKNESSES

- Lack of Validation: No User Study
 - One of the goals was more interactivity. Can’t validate w/o user study.
- Lack of Error Estimation
 - The distributions are approximations but currently the user has no way of knowing how good the approximation is
- Lack of Detail: Building QDS with a dataset. (minor)
 - Needs more detail about how to specify the schema
- Meta Comment: Should use a spellchecker. (minor)
CONCLUSION

- Presents QDS: a fast in-memory data structure
 - Supports uncertainty exploration + data distribution estimation
 - Designed for large static spatiotemporal datasets
- Source Code: https://github.com/cicerolp/qds
- Video: https://vimeo.com/262669555