Supporting Story Synthesis: Bridging the Gap between Visual Analytics and Storytelling

Siming Chen, Jie Li, Gennady Andrienko, Natalia Andrienko, Yun Wang, Phong H. Nguyen, and Cagatay Turkay

(2018)
Background
Research Problem
Related Works
Bridging the Gap
Proposed Solution
Thoughts
Background
Research Problem
Related Works
Bridging the Gap
Proposed Solution
Thoughts
Figure 6. Visual analytics interface of social media, including (a) topic projection view, (b) topic comparison view, (c) user/location distribution view, (d) temporal view, (e) story slice generation parameters, and (f) raw data table.
Figure 6. Visual analytics interface of social media, including (a) topic projection view, (b) topic comparison view, (c) user/location distribution view, (d) temporal view, (e) story slice generation parameters, and (f) raw data table.
Storytelling

Figure 8. Layout methods to organize story slices according to different perspectives: (a) time cycles, (b) locations, (c) users, and (d) keywords.
Figure 8. Layout methods to organize story slices according to different perspectives: (a) time cycles, (b) locations, (c) users, and (d) keywords.
Storytelling

- Helps **non-experts** connect the dots
- Effectively **communicates insights**
- Provides **meaning** and **context** to **data**
Background
Research Problem
Related Works
Bridging the Gap
Proposed Solution
Thoughts
The Gap

Visual Analytics

Goal
Support *Analysts* to gain valuable information from data

Users
Analysts - Trained and experienced
Active: produce analysis results

Display Content
Show primary data
Include all data
Include all aspects

Display Properties
Support *seeking* patterns
Comprehensive views
Advanced visual interfaces
The Gap

Visual Analytics

Goal
Support *Analysts* to *gain* valuable information from data

Users
Analysts - Trained and experienced
Active: produce analysis results

Display Content
Show primary data
Include all data
Include all aspects

Display Properties
Support *seeking* patterns
Comprehensive views
Advanced visual interfaces

Storytelling

Goal
Enable *audience* to *perceive* and understand information from a story

Users
General audience - No special knowledge and experience
Passive: perceive analysis results

Display Content
Show derived information
Include selected information pieces
Include selected aspects

Display Properties
Support *seeing* patterns
Reduced need for interaction
Focused views
The Gap

Visual Analytics
- Goal: Support *Analysts* to gain valuable information from data
- Users: Analysts - Trained and experienced
- Active: produce analysis results
 - Display Content: Show primary data, Include all data, Include all aspects
 - Display Properties: Support *seeking* patterns, Comprehensive views, Advanced visual interfaces

Storytelling
- Goal: Enable *audience* to perceive and understand information from a story
- Users: General audience - No special knowledge and experience
- Passive: perceive analysis results
 - Display Content: Show derived information, Include selected information pieces, Include selected aspects
 - Display Properties: Support *seeing* patterns, Reduced need for interaction, Focused views
How do we move from analysis to storytelling?
The Gap

How do we move from analysis to storytelling?
The Gap

How do we move from analysis to storytelling?

Multiple approaches but what we need is a data analysis to storytelling pipeline
Background
Research Problem
Related Works
Bridging the Gap
Proposed Solution
Thoughts
Past Work

- Need for organizing story contents
- Existing works compose stories with annotated screen shots of analytic displays
- Provenance systems rely on completed analysis bookmarks
- Other systems rely on completed visualizations
Past Work

- Need for organizing story contents
- Existing works compose stories with annotated screen shots of analytic displays
- Provenance systems rely on completed analysis bookmarks
- Other systems rely on completed visualizations

Inherits visual complexity of analytic displays
Past Work

- Need for organizing story contents
- Existing works compose stories with annotated screen shots of analytic displays
- Provenance systems rely on completed bookmarks
- Other systems rely on completed visualizations

Inherits visual complexity of analytic displays

No current systems are integrated into the analysis workflow!
Figure 6. Proposed framework for bridging the gap.
Bridging the Gap

Extend analysis and storytelling workflows toward each other

Figure 6. Proposed framework for bridging the gap.
Bridging the Gap

Figure 6. Proposed framework for bridging the gap.
Figure 6. Proposed framework for bridging the gap.
Story Slices

- Structured representations of findings during the course of analysis
- Define what facets (information) to capture

VAST Challenge 2011 finding structure ::=
<label, time, location, N people, N messages, {(keyword, frequency)}, context>
Story Slices

- Structured representations of findings during the course of analysis
- Define what facets (information) to capture

VAST Challenge 2011 finding structure ::=
<label, time, location, N people, N messages, {(keyword, frequency)}, context>

VAST Challenge, analyze the circumstances of an epidemic outbreak via microblogs
Story Slices

- Structured representations of findings during **the course of analysis**
- Define what **facets** (information) to capture

VAST Challenge 2011 finding structure ::=
<label, time, location, N people, N mentions>
Analytic Phase

Produce story slices during Analyze tasks

Figure 5. Visual analytics phase. After topic modelling, analysts explore the collection of messages from four perspectives and extract story slices.
Story Slices

<F1 (outbreak), time = May 18-20, location = Vastopolis, N people = 27 446, N messages = 59 755,
<F2 (cluster center-east), time = May 18-20, location = polygon1, N people = 16 479, N messages =
<F3 (cluster southwest), time = May 19-20, location = polygon2, N people = 6 752, N messages =
<F4 (hospitals), time = May 20, location = {{-93.33, 42.24}, {-93.42, 42.25}, {-93.44, 42.20}, ...}, N people = 149, N messages = 149,
<F5 (truck accident), time = May 17, location = {-93.427, 42.226}, N people = 149, N messages = 149,

59 755, {{chills, 10 436}, {fever, 7 585}, {sick, 6 543}, ...}, null>
messages = 32 445, {{chills, 6 511}, {fever, 4 905}, ...}, {flu, 3 466}, ...}, context = {wind = west-to-east>
messages = 9 719, {{diarrhea, 2 785}, {stomach, 2 682}, ...}, {nausea, 766}, ...}, context = {river flow = north-to-southwest>
messages = 3 265, N messages = 3 276, {{chills, 1 419}, {fever, 1 171}, ...}, {flu, 886}, ...}, null>
messages = 149, {{truck, 127}, ...}, {accident, 37}, ..., {burning, 14}, ..., {spilling cargo, 9}, ...}, context = {motorway, river bridge>
Story Slices

Facets help guide visual arrangements in story contents

<F1 (outbreak), time = May 18-20, location = Vastopolis, N people = 27 446, N messages = 59 755>
<F2 (cluster center-east), time = May 18-20, location = polygon1, N people = 16 479, N messages =
<F3 (cluster southwest), time = May 19-20, location = polygon2, N people = 6 752, N messages =
<F4 (hospitals), time = May 20, location = {(-93.33, 42.24), (-93.42, 42.25), (-93.44, 42.20), ...}, N p
<F5 (truck accident), time=May 17, location = (-93.427,42.226), N people = 149, N messages=149>

{chills, 10 436), (fever, 7 585), (sick, 6 543), ...}, null>

messages = 32 445, {chills, 6 511), (fever, 4 905), ...}, (flu, 3 466), ...}, context = {wind = west-to-east>

messages = 9 719, {(diarrhea, 2 785), (stomach, 2 682), ...}, (nausea, 766), ...}, context = {river flow = north-to-southwest>

N people = 3 265, N messages = 3 276, {(chills, 1 419), (fever, 1 171), ...}, (flu, 886), ...}, null>

N people = 149, {truck, 127), ...}, (accident, 37), ...}, (burning, 14), ...}, (spilling cargo, 9), ...}, context = {motorway, river bridge>

F5 Truck accident
Time: May 17
N people: 149
N messages: 149
Context: motorway, river bridge

F3 Cluster southwest
Time: May 19-20
N people: 6,752
N messages: 9,719
Context: river flow

F2 Cluster center-east
Time: May 18-20
N people: 16,479
N messages: 32,445
Context: wind

F4 Hospitals
Time: May 20
N people: 3,265
N messages: 3,276
Story Slices

Story slices are the input to the story synthesis phase.

Facets help guide visual arrangements in story contents.
Facet Types

- Discrete categories with no relationships
- Discrete entities with domain-specific relationships
- Linearly ordered elements
- Linearly ordered elements with distances
- Time
- 1D/2D/3D space
Facet Types

- Discrete categories with no relationships
- Discrete entities with domain-specific relationships
- Linearly ordered elements
- Linearly ordered elements with distances
- Time
- 1D/2D/3D space

Facets specify possible arrangements and aggregations
Facet Types

- Discrete categories with no relationships
- Discrete entities with domain-specific relationships
- Linearly ordered elements
- Linearly ordered elements with distances
- Time
- 1D/2D/3D space

These are very similar to the Abstract Data Types in VAD...
Background
Research Problem
Related Works
Bridging the Gap
Proposed Solution
Thoughts
Story Synthesis

Story synthesis creates story contents from story slices by…

‣ Aggregating and summarizing story slices according to facets/measurements

‣ Embedding details into views/layouts

‣ Arranging story slices onto layouts according to facets/relationships

‣ Showing facets by priority and from multiple perspectives

‣ Annotating
Story Synthesis

Story synthesis creates story contents from story slices by…

- **Aggregating** and **summarizing** story slices according to facets/measurements
- **Embedding** details into views/layouts
- **Arranging** story slices onto layouts according to facets/relationships
- **Showing** facets by **priority** and from multiple perspectives
- **Annotation**

Story synthesis does not include the design of the final story!
Story Synthesis

People distribution based on their attitudes and their keywords distribution

Figure 11. Output from story synthesis phase performed by sociology researcher.
Story Synthesis

People distribution based on their attitudes and their keywords distribution

Figure 11. Output from story synthesis phase performed by sociology researcher.
Story Synthesis

People distribution based on their attitudes and their keywords distribution

Figure 11. Output from story synthesis phase performed by sociology researcher.
Story Synthesis

People distribution based on their attitudes and their keywords distribution

Channels are used to convey facet information

Figure 11. Output from story synthesis phase performed by sociology researcher.
New Framework

1. Define **types** and **structures** of story slices - What facets or patterns may be used from the data analysis phase?

2. Design **representations** of story slices - What data structure will be used to contain slice information? How will slices be visualized in the synthesis workspace?

3. Define story synthesis **support functions**.

4. Design the visual analytics system, including **support** for **discovery** of potential story slices.
1. Define **types** and **structures** of story slices - What facets or patterns may be used from the data analysis phase?

2. Design **representations** of story slices - What data structure will be used to contain slice information? How will slices be visualized in the synthesis workspace?

3. Define story synthesis **support functions**.

4. Design the visual analytics system, **discovery** of potential story slices.

This framework can be used in designing visual analytics systems that provide support for story synthesis.
Background
Research Problem
Related Works
Bridging the Gap
Proposed Solution
Thoughts
Good

- Need for framework is well backed by current research
- Story slices help reason about abstract data more
- Story slices capture model of analysis concept generation
- Evaluated by two sociology experts (positive feedback)
Bad

.rollback(150)

☹ Paper didn’t do a great job proving generality of framework

☹ Majority of examples used online text message data

☹ Paper structure could be improved to help understanding

☹ Both experts only interviewed for 1.5h using similar data

☹ Is this framework better suited for messaging data?