The What-If Tool (WIT)

Interactive Probing of Machine Learning Models

James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda Viegas, and Jimbo Wilson

Presented on Nov 19, by Patrick Huber
Problem & Objective

Problem:

● Machine Learning models (e.g. deep learning) are “black-boxes”
● Responses of models to different inputs cannot be easily foreseen
● Big topic in AI: Explainability

Objective:

● Gain understanding of a model’s capabilities
 ○ when does it perform well/poorly
 ○ How is a change in the input reflected in the output (diversity)

Solution:

● Interactive visual “what-if” exploration
Model Understanding Frameworks

Black-Box:
- Does not rely on internals
- Probing depending on in- and outputs
- General - used in many applications
- WIT

White-Box:
- Illuminates internal workings
- Specific for a model
- Often not applicable
Why? - Initial Analysis

Proof-of-concept

- Evaluate technical suitability and compatibility of InfoVis solution

Workshops

- 2 usability studies at different scales and with different user-groups
- Application builds on insights from usability studies
- Authors derive 5 distinct user needs
Why? - User Needs

Need 1: **Test multiple hypotheses with minimal code**
- Interact with trained model through graphical interface (no code)
- Comprehend relationships between data and models

Need 2: **Use visualizations as a medium for model understanding**
- Generate explanations for model behavior
- Problem: Visual complexity, hard to find meaningful insights
- Solution: Provide multiple, complementary visualizations
Why? - User Needs

Need 3: **Test hypotheticals without having access to the inner workings of a model**

- Treat models as black boxes
- Generate explanations for end-to-end model behavior
- Answer questions like
 - “How would increasing the value of X affect a model’s prediction scores?”
 - “What would need to change in the data point for a different outcome?”
- No access to model internals
- Explanations generated remain model-agnostic
- Increases flexibility
Why? - User Needs

Need 4: Conduct exploratory intersectional analysis of model performance
- Users often interested in subsets of data on which models perform unexpectedly
- False positive and false negative rates can be wildly different
- Negative real-world consequences

Need 5: Evaluate potential performance improvements for multiple models
- Track impact of changes in model hyperparameters (e.g. changing a threshold)
- Interactively debug model performance by testing strategies
What? - The Tool

Build using Tensorboard, a code-free and installation-free visualization framework

- No custom coding (N1)
- Help developers and practitioners to understand ML systems
- Covers many standpoints (Inputs / single data points / models)
- Basic layout: 2 main panels → control panel & visualization panel

https://pair-code.github.io/what-if-tool/iris.html
What? - The Tool

Data

Machine Learning Model

What-If Tool

(b) Histogram of age, colored by classification
What? - The Tool

What-If Tool

(d) Small multiples by sex. Each scatterplot shows age vs positive classification score, colored by classification
What? - The Tool

Data

Machine Learning Model

What-If Tool

(f) Using images as thumbnails for image datasets
How? - Tailoring 3 Tasks to Satisfy User Needs

- Closely related to user needs
- Example of the UCI Census dataset
 - Solve prediction task
 - Classify individuals as high or low income
 - Train 2 models
 - Multi-layer neural network
 - Simple linear classifier
How? - Task 1: Exploring the Data

Customizable Analysis

(a) Confusion matrix of a single binary classification model, colored by prediction correctness
(b) Histogram of age, colored by classification
(c) Two-dimensional histogram of age and sex, colored by classification
How? - Task 1: Exploring the Data

Customizable Analysis

(d) Small multiples by sex. Each scatterplot shows age vs positive classification score, colored by classification
(e) Histograms of performance in a regression model that predicts age, faceted into 3 age buckets
(f) Using images as thumbnails for image datasets
How? - Task 1: Exploring the Data

Feature Analysis: Dataset Summary
How? - Task 2: Investigating What-If Hypothesis

- Generate & test hypotheses about how model treats data
 - Edit data points
 - Identify counterfactuals
 - Observe partial dependencies
- Apply carefully chosen input modifications (edit, add or delete feature values)
- Result of changing income from $3,000 → $20,000 (edit data point):

<table>
<thead>
<tr>
<th>Run</th>
<th>Model</th>
<th>Label</th>
<th>Score</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1 (>50k)</td>
<td>0.991</td>
<td>0.655581</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0 (<=50k)</td>
<td>0.008</td>
<td>-0.641580</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1 (>50k)</td>
<td>0.894</td>
<td>0.140262</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0 (<=50k)</td>
<td>0.067</td>
<td>-0.156162</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0 (<=50k)</td>
<td>0.650</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 (>50k)</td>
<td>0.336</td>
<td></td>
</tr>
</tbody>
</table>
How? - Task 3: Evaluate Performance and Fairness

- Slice data by feature values
- Perform measures on the subset
 - ROC
 - Confusion Matrix
 - Cost Ratio
- Measures can also be applied to Compare models
Data Scaling

● Assumption: Standard laptop
● Computational restrictions:
 ○ Tabular Data:
 ■ # Features: 10-100
 ■ # Datapoints: ~100,000
 ○ Image Data:
 ■ Pixel dimensions: 78x64
 ■ # Datapoints: 2,000
● Comment:
 ○ As seen before, occlusion already a problem with less data
Evaluation

- 3 case studies executed
 - 2 studies in a large software company
 - 1 study in a university environment
- Showing the potential of WIT to:
 - Uncover bugs
 - Explore the data
 - Find partial dependencies
Analysis Summary

- **What data:**
 - User data & machine learning models

- **What derived:**
 - Inference of the model (on the data)

- **What shown:**
 - Dataset- and datapoint-level results of ML models
 - Giving a better understanding of the capabilities and possible adversarial attacks
Analysis Summary

- **How executed:**
 - 3 common tasks derived from user studies

- **How shown:**
 - Extension of a out-of-the-box visualization tool

- **Why important:**
 - Machine Learning models are black boxes
 - Making crucial decisions in the real world
 - Understanding is important
Strength and Weaknesses

Strengths:

+ Versatile tool
+ Many useful real-world applications
+ Greatly reducing workload compared to creating own visualizations

Weaknesses:

- Only easily compatible with Tensorflow (one deep-learning library)
- Occlusion is a problem, already with small datasets (150 data points, see example)
- Strict computational restriction (100,000 data points is not a lot)
Thank You

Questions?