Semantics-Space-Time Cube: A Conceptual Framework for Systematic Analysis of Texts in Space and Time

Presented by Mint Tanprasert
CPSC 547, Winter 2019, UBC
Text – Space – Time

• How does text semantics vary over space and time?
 • Explore complex relationship between the three facets
 • E.g. trend of topic popularity
 • Data example: geolocated social media posts
Proposed Visualization

“Cube” metaphor

$P x S x T$
to Pics x Space x Time
Slices and Projections

Fix one variable

Aggregate over multiple slices (sum, mean, mode, quartiles, etc.)
Make each data **discrete** and **finite**

Calculate measures for each point of the cube

Design interactive interface for exploring data

Approach Overview

(b) **Cube Creation**
- **Topic Extraction**
 - Topic Selection (Form topic set)
 - Time Discretization (Form time step set)
 - Space Discretization (Form location set)
- **Stop word elimination**
- **Parameter setting**
- **Interactive editing**

(c) **Measure Calculation**
- Calculate two measures, i.e., **popularity score** and **keyword vector** for each point of the cube

(a) **Original Data**
- Space
- Time
- Text

(d) **Interactive Exploration**
- **Data Selector**
- **Relationship Explorer**
Cube Creation

- **TEXT**: is represented by a vector of topic weights
 - *Topic* is defined as a probability distribution over a given set of *keywords*
 - Latent Dirichlet Allocation (LDA) – a probabilistic topic modeling method
 - Show all topics and let users select the ones they want to explore

- **TIME**: divide into intervals that are meaningful to humans e.g. weeks.

- **SPACE**: use individual and public activity locations, e.g. cities.
Measure Calculation

- At each point \((p, s, t)\), we can **derive** meaningful information
 - Popularity score
 - Keyword vector (list of <keyword, weight> pairs)

![Diagram showing the relationship between document sets, topic sets, and keyword sets](image)

- \(PS(p, s, t) = \sum_{d \in D(s, t)} v_{dp}\)
- All documents in \(D(s, t)\) are posted at \((s, t)\)
- \(kw(p, s, t) = PS(p, s, t) \times v_{pk}\)
- \(kw(p, s, t)\) is the weight of keyword \(k\) at \((p, s, t)\)
Interactive Exploration

Data Selector
Interactive Exploration

- **Relationship Explorer**
- **Location View**
- **Time View**
- **Keyword View**
- **History Panel**
- **Topic View**
Basic Idea

Cube Creation
- Topic Extraction (Form topic set)
 - Stop word elimination
 - Parameter setting
 - Interactive editing
- Topic Selection (Form topic set)
- Time Discretization (Form time step set)
- Space Discretization (Form location set)

Measure Calculation
- Document Set
- Topic Set
- Keyword Set
- Calculate two measures, i.e., popularity score and keyword vector for each point of Cube

Goal: Exploration of various relationships among the space, time, and topics.

T1: \(t \rightarrow (S \rightarrow P \rightarrow M) \) or \(\sum t \rightarrow (S \rightarrow P \rightarrow M) \)
T2: \(t \rightarrow (P \rightarrow S \rightarrow M) \) or \(\sum t \rightarrow (P \rightarrow S \rightarrow M) \)
T3: \(s \rightarrow (T \rightarrow P \rightarrow M) \) or \(\sum s \rightarrow (T \rightarrow P \rightarrow M) \)
T4: \(s \rightarrow (P \rightarrow T \rightarrow M) \) or \(\sum s \rightarrow (P \rightarrow T \rightarrow M) \)
T5: \(p \rightarrow (S \rightarrow T \rightarrow M) \) or \(\sum p \rightarrow (S \rightarrow T \rightarrow M) \)
T6: \(p \rightarrow (T \rightarrow S \rightarrow M) \) or \(\sum p \rightarrow (T \rightarrow S \rightarrow M) \)

Original Data
- Space
- Time
- Text

Interactive Exploration
- Data Selector
- Relationship Explorer

https://ieeexplore.ieee.org/abstract/document/8540796/media#media
Analysis Summary: WHAT

• Data
 • A table where each item has 3 attributes
 • Text (arbitrary and unstructured)
 • Location (spatial)
 • Time (sequential)

• Derived
 • Discretized and finite representation of each attribute
 • Popularity score and keyword vector
Analysis Summary: **HOW**

- **Encode**
 - Color-code objects based on position in a projection
 - Use geographic map with glyphs
 - Size-code keyword based on importance
 - Indicate popularity score by linear ordering

- **Manipulate**
 - Pop-up window
 - 2D navigation

- **Facet**
 - Superimpose streams in time view (extended mode)
 - Linked navigation

- **Reduce**
 - Filter with “slices”
 - Aggregate with “projection”
Critiques – Strengths

- Good use of the metaphor
 - A good conceptual model for developing database operations (from paper)
- Filtering and aggregation allow for exploring large amount of data
- Responsive and well-organized view coordination
- Uniformity in visual design
- Flexible navigation that supports various topics and tasks
- Follow “Overview First, Zoom and Filter, Details on Demand”
Critiques – Weaknesses

• Cannot observe the variation for all 3 dimensions, simultaneously (must slice or project first)
• The “cube” dimensions can’t be too big (from paper)
• Information loss in discretization (from paper)
• Limited number of “cards” can be shown at a time
• Automated item sorting could create change blindness
• Spatial positions of keywords in keyword view is meaningless
• “Number of specific mentioned keywords may not really reflect the public opinions.” (Expert feedback from paper)
Thank you for your attention

Any questions?