

Source of Data

The raw time-series data are collected by sensors installed in Ulsan, South Korea.

- **DSRC data**: road name, road location, and vehicle detectors.
- **Inductive loop data**: road name, road location, direction, speed, and volume. Resolution: every 15 minutes.
- There is a historic dataset over a total period of over two years, as well as real-time dynamic stream data.

Summary

We present an interactive visual analytics system that enables traffic congestion exploration, surveillance, and forecasting based on vehicle detector data.

Tasks

- Quoted from the paper:
 - Analysis of congestion patterns, changes, and trends with historical data.
 - Real-time congestion surveillance across the city.
 - Real-time congestion propagation estimation.
 - Real-time predictive analysis of near-future congestion conditions, and
 - Real-time maintenance of malfunctioning vehicle detectors.

Linked views have been used in traffic visualisation in the past, but for different tasks.

- **Clock view**: positions on the diagram correspond to times on a clock.
- **Data Visualised**:
 - Traffic volume in each direction.
 - Geographical position of the roads.
 - Traffic speed in each direction.
 - Congestion information: 2D Spatial time series data.

View

- **Colour map**
 - Traffic speed encoded as a sequential colour map.
 - Green over 40 km/h: unimpeded
 - Orange between 20 and 40 km/h: slow
 - Red below 20 km/h: impeded
 - Which are conventions in the domain.

- **Existing Systems**
 - **VSRivers** stands for ‘Volume-Speed Rivers’: large volume and low speed means high importance.
 - Lines on a geographic map
 - Width: traffic volume
 - Colour: traffic speed

- **Data for individual roads**
 - Speed encoded as colour and displayed directly.
 - Volume encoded as length of bars.
 - Can be sorted: good for searching congested roads.

View

- On a higher level: analyse congestion patterns, discover places of interest, and derive prediction of future congestions.
- On a lower level: locate and explore congested roads, and query the historical and temporal congestion information of roads.
View

- Calendar view
 - Y-axis: days in a week; X-axis: weeks in a year
 - Speed encoded as colours
 - Holidays highlighted using black outlines
 - Aggregated speed and volume for each week and each day in a week shown at the end of the calendar

- In-detail view
 - Speed encoded as colours
 - Highest resolution

- "Snapshots"
 - Segments of the main map highlighted
 - Linked to main map

- Linked view
 - Map and table of roads: shared data, different encoding
 - Map & table: subset of data; clock & calendar: detailed data
 - Linked navigation

Evaluation

- Three case studies
 - ‘Understanding City Traffic Congestion Patterns’
 - ‘Investigation on Congestion Improvement Projects’
 - ‘Broadcasting Traffic Congestion Conditions’ - in real time
 - Expert interview

Critique

- Strengths
 - Design process with a focus on tasks
 - Massive item reduction to improve visual clarity
 - Interlinked views makes navigation easy

- Weaknesses
 - Do we really want to perform real-time and retrospective analysis using the same application?
 - Colour map - low resolution and accessibility issues
 - Evaluation - would a quantitative study be possible?

Thank you!

Any questions?