Monica S. Lam, Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Week 8: 29 Oct 2019

Scientific Presentation Planning

- Must include both text and images
- Must include paper page URL in slides if it exists
- Do include both text and images
- New images you might make new diagrams
- You might grab other images, especially for background or if comparing to prev work

How to Present a Paper

- Project voice so we can hear you
- Avoid constant distracting jiggle
- Avoid muttered comments to self, volume drop-off at end of slide
- Aim for 18 min presenting and 2 min discussion
- For flow of words and for timing
- Break after you’ve explained some of background
- After you’ve walked us through most of interface, to show interaction in specific
- Avoid judgment call: how much detail to have in presenter notes
- Explain core technical content to audience
- Analyze with doing what/why/how framework
- Judgement call on text/image ratio, avoid extremes
- 24 point as absolute minimum
- Simple enough to be useable at full/partial skull
- Judgement call about layout/white space
- Avoid micro text with macro whitespace

How to Give an Academic Talk

- Paul N. Edwards
- Leslie Lamport
- Jim Blinn
- Paul N. Edwards
- Leslie Lamport
- Jason Harrison

Biomechanical Motion

- Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang

Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data

- Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang

- Derived data: traces/streamers
 - Derived data: 3D motion traces from interactively chosen spots
 - generates x/y/z data over time
 - streamers shown in 3D views directly
 - populates 2D plots

Multiple linked spatial & non-spatial views

- Data: 3D spatial, multiple attris (cyclic)
- Encode: 3D spatial, parallel coords, 2D line (xy) plots
- Face: few large multi-views, many small multuples (~100)
 - Encode: color by row for window background
 - View coordination: line in parameter its frame in small multi

- Technical advice
 - How to Give an Academic Talk
 - Paul N. Edwards
 - How to Give a Great Research Talk
 - James P. Peyton Jones, John Hughes, and John Labunsky
 - How to Present a Paper
 - Leslie Lamport
 - Things I Hope Not To See or Hear at SIGGRAPH
 - Just laser pointer judiciously
 - Avoid constant distracting jiggle
 - Practice, practice, practice
 - For flow of words and for timing
 - Question handling: difficult to practice beforehand
 - Face audience, not screen
 - Pro tip: your screen left/right matches audience left/right in this configuration
 - Avoid reading exactly what the slide says
 - Judgment call how much detail to have in presenter notes
 - Avoid monotonous commas so well, some drop off at end of slide
 - Avoid monotonous, variable emphasis helps us get engaged
 - Simple enough to be useable at full/partial skull
 - Avoid micro text with macro whitespace

Typo fisheye views paper, chapters: reduce, embed, case studies

New

- Guest lectures: Bettina Speckmann, Cartography & Flow; Yang Wang, Architectures for Scale.
- Example Present: Biomechanical Motion; Proposals Expectations
- Tamara Munzner
 - Department of Computer Science
 - University of British Columbia

Slides

- Do include both text and images
- Text:
 - Font must be readable from back of room
 - 24 point as absolute minimum
 - Use different type sizes to help guide eye, with larger title font
 - Avoid micro text with macro whitespace
 - Bullet style not sentences
 - Sub-bullets for secondary points
 - Compress what it feels like to read an entire long sentence on a slide while complete structure is a good thing to have for flow in writing; it’s more difficult to parse in the context of a slide where the speaker is speaking over it.
 - Legibility
 - Remember luminance contrast requirements with colors!

Style

- Face audience, not screen
 - Pro tip: your screen left/right matches audience left/right in this configuration
 - Project voice so we can hear you
 - Avoid constant distracting jiggle
 - Project voice so we can hear you
 - Avoid constant distracting jiggle
 - Practice, practice, practice
 - For flow of words and for timing
 - Question handling: difficult to practice beforehand
 - Face audience, not screen
 - Pro tip: your screen left/right matches audience left/right in this configuration
 - Project voice so we can hear you
 - Avoid constant distracting jiggle
 - Practice, practice, practice
 - For flow of words and for timing
 - Question handling: difficult to practice beforehand

Beyond paper itself

- Check for author paper page
 - Required for design studies and technique papers
 - Some possible for algorithm papers
 - But more emphasis on presenting algorithm clearly
 - More emphasis on presenting algorithm clearly
 - Minimal for evaluation papers
 - But can discuss study design and statistical analysis methods

Analysis & critique

- Paper type dependent
 - Required for design studies and technique papers
 - Some possible for algorithm papers
 - But can discuss study design and statistical analysis methods

Text

- Example Present: Biomechanical Motion
 - Beyond paper itself
 - Small multiples for overview
 - Derived data: traces/streamers
 - Style
 - Sub-bullets for secondary points
 - Technical advice
 - How to Give an Academic Talk
 - Paul N. Edwards
 - How to Give a Great Research Talk
 - James P. Peyton Jones, John Hughes, and John Labunsky
 - How to Present a Paper
 - Leslie Lamport
 - Things I Hope Not To See or Hear at SIGGRAPH
 - Just laser pointer judiciously
 - Avoid constant distracting jiggle
 - Practice, practice, practice
 - For flow of words and for timing
 - Question handling: difficult to practice beforehand

Small multiples for overview

- Facet: small multiples for overview
 - Aggressive/ambitious, 100+ views
 - Encode: color by row for window background
 - View coordination: line in parameter its frame in small multi
 - Data: 3D spatial, multiple attris (cyclic)
 - Encode: 3D spatial, parallel coords, 2D line (xy) plots
 - Face: few large multi-views, many small multuples (~100)
 - Encode: color by row for window background
 - View coordination: line in parameter its frame in small multi

News

- Presentation days assigned
 - Both times and papers: still need topics from two of you!
 - Today:
 - Guest lecture: Bettina Speckmann
 - Neurovis and Flow Algorithms for Automated Cartography
 - Guest lecture: Yang Wang
 - Architectures for Scale
 - Break
 - Example presentation
 - Proposals expectations
 - Next time:
 - Topo fisheye views paper, chapters: reduce, embed, case studies

Slides images

- Figures from paper
 - Good idea to use figures from paper, especially screenshots
 - Judgement call about content/size/all
 - New images
 - You might make new diagrams
 - You might grab other images, especially for background or if comparing to prior work
 - Avoid random clip art
 - Images alone often hard to follow
 - Images do not speak for themselves, you must walk us through them
 - Test bullets to walk us through your highest level points
 - Hard to follow if only made routinely
 - Judgement call on slide/taking ratio, avoid extremes

Slides

- Do include both text and images
 - Text:
 - Font must be readable from back of room
 - 24 point as absolute minimum
 - Use different type sizes to help guide eye, with larger title font
 - Avoid micro text with macro whitespace
 - Bullet style not sentences
 - Sub-bullets for secondary points
 - Compress what it feels like to read an entire long sentence on a slide while complete structure is a good thing to have for flow in writing; it’s more difficult to parse in the context of a slide where the speaker is speaking over it.
 - Legibility
 - Remember luminance contrast requirements with colors!

Biomechanical motion design study

- Large DB of 3D motion data
 - Pig chewing high-speed motion at joint, 500 FPS w/ sub-mm accuracy
 - Domain tasks
 - 3D: Taskology relationship between 3D shape of bones and their function
 - What is a typical chewing motion?
 - How does chewing change over time based on amount/type of food in mouth?
 - Abstract tasks
 - Trends & anomalies across collection of time-varying spatial data
 - Understanding complex spatial relationships
 - Guest lecture: Yang Wang
 - Include paper page URL in slides if it exists
 - May have demo or supplemental material
 - Avoid judgment call: how much detail to have in presenter notes
 - Explain core technical content to audience
 - Analyze with doing what/why/how framework
 - Judgement call on slide/taking ratio, avoid extremes

Technical advice

- How to Give an Academic Talk
 - Paul N. Edwards
- How to Give a Great Research Talk
 - James P. Peyton Jones, John Hughes, and John Labunsky
- How to Present a Paper
 - Leslie Lamport
- Things I Hope Not To See or Hear at SIGGRAPH
 - James P. Peyton Jones, John Hughes, and John Labunsky
- Just laser pointer judiciously
- Avoid constant distracting jiggle
- Practice, practice, practice
- For flow of words and for timing
- Question handling: difficult to practice beforehand

Mental models of systems

- Large DB of 3D motion data
 - Pig chewing high-speed motion at joint, 500 FPS w/ sub-mm accuracy
 - Domain tasks
 - 3D: Taskology relationship between 3D shape of bones and their function
 - What is a typical chewing motion?
 - How does chewing change over time based on amount/type of food in mouth?
 - Abstract tasks
 - Trends & anomalies across collection of time-varying spatial data
 - Understanding complex spatial relationships
 - Guest lecture: Yang Wang
 - Include paper page URL in slides if it exists
 - May have demo or supplemental material
 - Avoid judgment call: how much detail to have in presenter notes
 - Explain core technical content to audience
 - Analyze with doing what/why/how framework
 - Judgement call on slide/taking ratio, avoid extremes

Slides

- Do include both text and images
 - Text:
 - Font must be readable from back of room
 - 24 point as absolute minimum
 - Use different type sizes to help guide eye, with larger title font
 - Avoid micro text with macro whitespace
 - Bullet style not sentences
 - Sub-bullets for secondary points
 - Compress what it feels like to read an entire long sentence on a slide while complete structure is a good thing to have for flow in writing; it’s more difficult to parse in the context of a slide where the speaker is speaking over it.
 - Legibility
 - Remember luminance contrast requirements with colors!

Small multiples for overview

- Facet: small multiples for overview
 - Aggressive/ambitious, 100+ views
 - Encode: color code window by briar
 - Filter:
 - Full-partial skull
 - Streamers
 - Simple enough to be useable at low-information density
Critique

• many strengths
 – carefully designed with well justified design choices
 – explicitly followed mantra
 – aggressive about multiple views, arguably pushing limits of understandability
 – encode coloured by vertical distance separating teeth (derived surface interactions)
 – also 3D instantaneous helical axis showing motion of mandible relative to skull

• weaknesses/limitations
 – (older paper feels less novel, but must consider context of what was new)
 – scale analysis: collection size of <=100, not thousands (understandably)
 – aggressive about multiple views, arguably pushing limits of understandability

Proposals Expectations

Proposals

• projects: written proposals due Mon Nov 4 10pm
 – (no readings or comments due Tue Nov 5)
• heading
 – project title (real title, not just “CPSC 547 proposal” – can change later)
 – name & email of every person on team (do not include student numbers)
• intro: brief description of what you’re proposing to do, at high level
 – include personal expertise in this area (for each group member)
• for design studies: domain, data, task
 – definitely in domain terms
 – get started on abstraction (even if preliminary)
• for technique projects: explain proposed context of use

Proposals II

• proposed infovis solution (what you know so far)
 – do include illustration of what interface might look like, could be hand drawn sketch or mockup made with drawing program
 – do include scenario of use (how user would use solution to address task)
• implementation plan (high-level platform, language, libraries)
 – clarify your scope/goal building on work of others to enable more ambitious project, not rolling your own to learn tools, amount of work depends on your existing expertise
 – milestones
 – break into meaningful smaller pieces, specific to your project, in addition to generic
 – for each estimate target date of completion and hours of work
 – be explicit about who will do what: breakdown between group members
 – time scope: 70 hrs per person across whole project
 – very typical to structure as possibilities: after A&B, decide on C and do 2 of D-G

Proposals III

• http://www.cs.ubc.ca/~mnn/courses/547-17F/projectdesc.html#proposals
 – also, consult final report structure to have future goal in mind
• http://www.cs.ubc.ca/~mnn/courses/547-17F/projectdesc.html#final

Projects overall schedule

• Pitches: Tue Oct 8 in class
• Groups finalized: Fri Oct 19 5pm
• Meetings cutoff: Fri Nov 1 at 6pm
• Proposals due: Mon Nov 4 at 10pm
 – (no readings due Tue Nov 5)
• Peer Project Reviews 1: Tue Nov 19 in class
• Peer Project Reviews 2: Tue Dec 4 in class
• Final presentations: Tue Dec 10 1-5pm
• Final papers due: Fri Dec 13 at 11:59pm

Meetings

• each group needs signoff: at least one meeting
 – in some cases followup meeting needed; in some cases you’re already set
 – meetings cutoff is 6pm Fri Nov 1

Projects

• Derived data: surface interactions
 – derived data
 – 3D surface interaction patterns
 – facet
 – superimposed layers in 3D view
 – encoding
 – color coding

• Side by side views demonstrating tooth slide
 – facet: linked navigation vs some 3D viewpoints for all
 – encode coloured by vertical distance separating teeth (derived surface interactions)
 – also 3D instantaneous helical axis showing motion of mandible relative to skull

Cluster detection

• identify clusters of motion cycles
 – from combo: 3D xy plots & parcoords
 – show motion itself in 3D view
 – facet: superimposed layers
 – foreground/background layers in parcoords view itself

Analysis summary

• what: data
 – 3D spatial, multiple stimuli (cycle)
• what: derived
 – 3D motion traces
 – 3D surface interaction patterns
 – how: encode
 – 3D spatial, parallel coords, 3D plots
 – color views by trial, surfaces by interaction patterns
 – how: reduce – 3D navigation

• how: change
• how: facet
 – few large multiform views
 – many small multiples (~100)
 – linked highlighting
 – linked navigation
 – layering

• how: reduce – filtering

Proposals II

• proposed infovis solution (what you know so far)
 – do include illustration of what interface might look like, could be hand drawn sketch or mockup made with drawing program
 – do include scenario of use (how user would use solution to address task)
• implementation plan (high-level platform, language, libraries)
 – clarify your scope/goal building on work of others to enable more ambitious project, not rolling your own to learn tools, amount of work depends on your existing expertise
 – milestones
 – break into meaningful smaller pieces, specific to your project, in addition to generic
 – for each estimate target date of completion and hours of work
 – be explicit about who will do what: breakdown between group members
 – time scope: 70 hrs per person across whole project
 – very typical to structure as possibilities: after A&B, decide on C and do 2 of D-G

Next time

• deadlines
 – meetings due by Fri Nov 1, 6pm
 – several of the projects are not yet signed off, slots filling up fast
 – proposals due by Mon Nov 4, 10pm
• next week
 – presentations
 – finishing discussions from today’s reading

Projects

• Proposals

• Critique

• Analysis summary

• Projects overall schedule

• Proposals II

• Proposals III

• Meetings

• Proposals

• Proposals II

• Proposals III

• Meetings

• Proposals

• Proposals II

• Proposals III

• Meetings

• Proposals

• Proposals II

• Proposals III

• Meetings