Discourse – Sentiment Alignment Tool (DSAT)
Introduction

Discourse Parsing

Discourse Parsing:

- Crucial task within the area of NLP
- Enhances many downstream applications
 - Sentiment analysis
 - Summarization
 - Question answering

Goal:

- Reveal the underlying structure of coherent text (a discourse)
 - Complete documents
 - Multiple sentences
Introduction
Discourse Parsing

In the Past:

● Human-annotated gold-standard discourse trees

Recently:

● Use large datasets without gold-standard trees
● Automatically infer discourse trees
● Using distant supervision from sentiment data
A human-annotated Discourse Tree

But he added:

(1) Attribution

Some people use the purchasers’ index as a leading indicator;

(2) Contrast

...some use it as a coincident indicator.

(3) Contrast

But the thing it’s supposed to measure

(4) Elaboration

--manufacturing strength --

(5) Same-Unit

it missed altogether last month.

(6)
[What happened to Dunkin’ Donuts?] (1)
Holy crap does this place suck.] (2)
The donuts are stale and taste weirdly like chemicals.] (3)
[I can not recommend anything] (4)
[except that you drive five minutes to Bosa Donuts on
McDowell.] (5)
[Great donuts] (6)
[and locally owned.] (7)
[Support local.] (8)
Problem & Objective

Problem:
- Fully automated generation
- No human-in-the-loop
- Existing tools limited to comparisons against gold-standard

Objective:
- Create visualization, which generates insights into the alignment of discourse trees and sentiment
{ Root (span 1 22)
 (Nucleus (span 1 10) (rel2par Topic-Shift)
 (Nucleus (span 1 3) (rel2par span)
 (Satellite (leaf 1) (rel2par attribution) (text _!Moody's Investors Service said_!))
 (Nucleus (span 2 3) (rel2par span)
 (Nucleus (leaf 2) (rel2par span) (text _!it reduced its rating on $165 million of subordinated debt of this Beverly Hills, Calif., thrift, _!))
 (Satellite (leaf 3) (rel2par result) (text _!citing turmoil in the market for low-grade, high-yield securities._!))
)
)
)
 (Satellite (span 4 10) (rel2par summary-n)
 (Nucleus (span 4 9) (rel2par span)
 (Nucleus (span 4 7) (rel2par span)
 (Nucleus (span 4 6) (rel2par span)
 (Satellite (leaf 4) (rel2par attribution) (text _!The agency said_!))
 (Nucleus (span 5 6) (rel2par span)
 (Nucleus (leaf 5) (rel2par List) (text _!It reduced its rating on the thrift's subordinated debt to B-2 from Ba-2_.!))
 (Nucleus (leaf 6) (rel2par List) (text _!and will keep the debt under review for possible further downgrade._!))
)
)
)
)
)
}

"sentiment": 0.2515886536341643, "attention": 0.9277132898569107,
"sentiment": 0.24531555738486907, "attention": 0.8705874979496002,
"sentiment": 0.24325398682811736, "attention": 0.8900138735771179,
"sentiment": 0.2344575598835945, "attention": 0.8881056308746338,
Demo
Design Decisions & Idioms

Design Decisions:

- 3-column design
 - Left: Document selection
 - Center: Vertical tree layout
 - Right: Textual representation

- Restricted navigation/zooming
- Dynamic scrolling
- Relative/Absolute sentiment scaling
- Hierarchical dynamic highlighting

Idioms Used:

- Visual Encoding:
 - Node-link diagram
 - Topological structure important
 - Less than 150 nodes
 - Node ordering \rightarrow Text

- Interaction Idiom:
 - Bidirectional linking
 - Text \rightarrow Leaf-node
 - Subtree \rightarrow Connected text spans
Analysis - What / How / Why

What?

Data:
Textual representation of trees annotated with sentiment and importance (attention)

Derived:
→ Spacial tree representation
→ Sentiment annotation as diverging, sequential color-scale
→ Importance as node & link size

Shown:
→ Tree + Text of a single document

How?

Executed:
Flat data converted in hierarchical tree structure

Shown:
→ Linked discourse tree / text
→ Sentiment & importance on every node
→ Textual index at leaf-nodes
→ Restricted navigation on complete subtrees
Why?

Important:

→ Correct alignment of tree / sentiment not easy to find without spacial encoding of tree

→ Repetition / Biases / Misalignment can be graphically explored

→ Dataset-level evaluations not sufficient (but very common)
Conclusion & Future Work

Conclusion:
- Visualization helped confirm hypothesis
- Especially useful for mixed reviews
- Positive feedback from user in the domain

Future Work:
- Augment document selection
- Restricted local Pan & Zoom
- Overlay multiple trees
- Collapsible layout
Thank You

Questions?