Wrapup: Research Papers and Process

Tamara Munzner
Department of Computer Science
University of British Columbia

CPSC 547, Information Visualization
28 November 2017

http://www.cs.ubc.ca/~tmm/courses/547-17F
Today

• writing infovis papers: pitfalls to avoid

• other research pitfalls and process
 – review reading, review writing, conference talks

• final papers and final presentations
 – course paper vs research paper expectations

• reproducible and replicable research

• other course pitch: Rensink
Process & Pitfalls for InfoVis Papers
Idiom pitfalls

• Unjustified Visual Encoding
 – should justify why visual encoding design choices appropriate for problem
 – prerequisite: clear statement of problem and encoding!

• Hammer In Search of Nail
 – should characterize capabilities of new technique if proposed in paper

• Color Cacophony
 – avoid blatant disregard for basic color perception issues
 • huge areas of highly saturated color
 • categorical color coding for 15+ category levels
 • red/green without luminance differences
 • encoding 3 separate attributes with RGB

• Rainbows Just Like In The Sky
 – avoid hue for ordered attributes, perceptual nonlinearity along rainbow gradient
Later pitfalls: Strategy

• What I Did Over My Summer Vacation
 – don’t focus on effort rather than contribution
 – don’t be too low level, it’s not a manual

• Least Publishable Unit
 – avoid tiny increment beyond (your own) previous work
 – bonus points: new name for old technique

• Dense As Plutonium
 – don’t cram in so much content that can’t explain why/what/how
 • fails reproducibility test

• Bad Slice and Dice
 – two papers split up wrong
 – neither is standalone, yet both repeat
Later pitfalls: Tactics

• Stealth Contributions
 – don’t leave them implicit, it’s your job to tell reader explicitly!
 – consider carefully, often different from original project goals
Contributions in research papers

• what are your research contributions?
 – what can we do that wasn’t possible before?
 – how can we do something better than before?
 – what do we know that was unknown or unclear before?
• determines everything
 – from high-level message to which details worth including
• often not obvious
 – diverged from original goals, in retrospect
• state them explicitly and clearly in the introduction
 – don’t hope reviewer or reader will fill them in for you
 – don’t leave unsaid should be obvious after close reading of previous work
 – goal is clarity, not overselling (limitations typically later, in discussion section)
Later pitfalls: Tactics

• Stealth Contributions
 – don’t leave them implicit, it’s your job to tell reader explicitly!
 – consider carefully, often different from original project goals

• I Am So Unique
 – don’t ignore previous work
 – both on similar problems and with similar solutions

• Enumeration Without Justification
 – “X did Y” not enough
 – must say why previous work doesn’t solve your problem
 – what limitations of their does your approach fix?

• I Am Utterly Perfect
 – no you’re not; discussion of limitations makes paper stronger!
Later pitfalls: Results

• Unfettered By Time
 – choose level of detail for performance numbers
 – detailed graphs for technique papers, high-level for design & eval papers

• Straw Man Comparison
 – compare appropriately against state-of-the-art algorithms
 – head-to-head hardware is best (re-run benchmarks yourself, all on same machine)

• Tiny Toy Datasets
 – compare against state-of-the-art dataset sizes for technique (small ok for eval)

• But My Friends Liked It
 – asking labmates not convincing if target audience is domain experts

• Unjustified Tasks
 – use ecologically valid user study tasks: convincing abstraction of real-world use
Final pitfalls: Style

• Deadly Detail Dump
 – explain how only after what and why; provide high-level framing before low-level detail

• Story-Free Captions
 – optimize for flip-through-pictures skimming

• My Picture Speaks For Itself
 – explicitly walk them through images with discussion

• Grammar Is Optional
 – good low-level flow is necessary (but not sufficient), native speaker check good if ESL

• Mistakes Were Made
 – don’t use passive voice, leaves ambiguity about actor
 • your research contribution or done by others?
Final pitfalls: Style 2

• Jargon Attack
 – avoid where you can, define on first use
 • all acronyms should be defined

• Nonspecific Use Of Large
Final pitfalls: Submission

• Slimy Simultaneous Submission
 – often detected when same reviewer for both
 – instant dual rejection, often multi-conference blacklist

• Resubmit Unchanged
 – respond to previous reviews: often get reviewer overlap, irritated if ignored
Generality

- encoding: visualization specific
- strategy: all research
- tactics: all research
- results: visualization specific
- style: all research, except
 - Story-Free Captions, My Picture Speaks For Itself
Research Process & Pitfalls
Review reading pitfalls

• Reviewers Were Idiots
 – rare: insufficient background to judge worth
 – if reviewer didn’t get your point, many readers won’t
 – your job: rewrite so clearly that nobody can misunderstand

• Reviewers Were Threatened By My Brilliance
 – seldom: unduly harsh since intimately familiar with area

• I Just Know Person X Wrote This Review
 – sometimes true, sometimes false
 – don’t get fixated, try not to take it personally

• It’s The Writing Not The Work
 – sometimes true: bad writing can doom good work (good writing may save borderline)
 – sometimes false: weak work common! reinvent the wheel worse than previous one
Review writing pitfalls

• Uncalibrated Dismay
 – remember you’ve only read the best of the best!
 – most new reviewers are overly harsh

• It’s Been Done, Full Stop
 – you must say who did it in which paper, full citation is best

• You Didn’t Cite Me
 – stop and think whether it’s appropriate
 – be calm, not petulant

• You Didn’t Channel Me
 – don’t compare against paper you would have written
 • review the paper they submitted
Conference talk pitfalls

• Results As Dessert
 – don’t save until the end as a reward for the stalwart!
 – showcase early to motivate

• A Thousand Words, No Pictures
 – aggressively replace words with illustrations
 – most slides should have a picture

• Full Coverage Or Bust
 – cannot fit all details from paper
 – communicate big picture
 – talk as advertising: convince them it’s worth their time to read paper!
Paper writing process suggestions

• pre-paper talk
 – write and give talk first, as if presenting at conference
 – iterate on talk slides to get structure, ordering, arguments right
 – then create paper outline from final draft of slides
 • encourages concise explanations of critical ideas, creation of key diagrams
 • avoids wordsmithing digressions and ratholes
 • easier to cut slides than prose you agonized over

• pre-paper/practice talk feedback session: at least 2-3x talk length
 – global comments, then slide by slide detailed discussion
 – nurture culture of internal critique (build your own critique group if necessary)

• have non-authors read paper before submitting
 – internal review can catch many problems
 – ideally group feedback session as above
Final Papers & Presentations
Final reports

- PDF, use InfoVis templates http://junctionpublishing.org/vgtc/Tasks/camera_tvCG.html

- no length cap: illustrate freely with screenshots!
 - design study / technique: aim for at least 6-8 pages
 - analysis / survey: aim for at least 15-20 pages

- ok to re-use text from proposal, interim writeup

- encourage looking at my writing correctness and style guidelines
 - http://www.cs.ubc.ca/~tmm/writing.html

- strongly encourage looking at previous examples
 - www.cs.ubc.ca/~tmm/courses/547-17F/projectdesc.html#examp
 - Example Past Projects
 - browse 2015, 2014,… reports
Course requirements vs research paper standards

• research novelty **not** required

• mid-level discussion of implementation **is** required
 – part of my judgement is about how much work you did
 – high level: what toolkits etc did you use
 – medium level: what pre-existing features did you use/adapt
 – low level **not** required: manual of how to use, data structure details

• design justification **is** required
 – (unless analysis/survey project)
 – different in flavour between design study projects and technique projects
 – technique explanation alone is not enough

• publication-level validation **not** required
 – user studies, extensive computational benchmarks, utility to target audience
Report structure: General

• low level: necessary but not sufficient
 – correct grammar/spelling
 – sentence flow

• medium level: order of explanations
 – build up ideas

• high through low level: why/what before how
 – paper level
 • motivation: why should I care
 • overview: what did you do
 • details: how did you do it
 – section level
 • overview then details
 – sometimes subsection or paragraph level
Sample outlines: Design study

• www.cs.ubc.ca/~tmm/courses/547-17F/projectdesc.html#examp

• abstract
 – concise summary of your project
 – do not include citations

• introduction
 – give big picture, establish scope, some background material might be appropriate

• related work
 – include both work aimed at similar problems and similar solutions
 – no requirement for research novelty, but still frame how your work relates to it
 – cover both academic and relevant non-academic work
 – you might reorder to have this section later
Sample outlines: Design study II

• data and task abstractions
 – analyze your domain problem according to book framework (what/why)
 – include both domain-language descriptions and abstract versions
 – could split into data vs task, then domain vs abstract - or vice versa!
 – typically data first then task, so that can refer to data abstr within task abstr

• solution
 – describe your solution idiom (visual encoding and interaction)
 – analyze it according to book framework (how)
 – justify your design choices with respect to alternatives
 – if significant algorithm work, discuss algorithm and data structures
Sample outlines: Design study III

• implementation
 – medium-level implementation description
 • specifics of what you wrote vs what existing libraries/toolkits/components do
 – breakdown of who did what work

• results
 – include scenarios of use illustrated with multiple screenshots of your software
 • walk reader through how your interface succeeds (or falls short) of solving intended problem
 • report on evaluation you did (eg deployment to target users, computational benchmarks)
 • screenshots should be png (lossless compression) not jpg (lossy compression)!

• discussion and future work
 – reflect on your approach: strengths, weaknesses, limitations
 – lessons learned: what do you know now that you didn’t when you started?
 – future work: what would you do if you had more time?
Sample outlines: Design study IV

• conclusions
 – summarize what you’ve done
 – different than abstract since reader has seen all the details

• bibliography
 – make sure to use real references for work that’s been published academically
 • not just URL
 • check arxiv papers, many have forward link to final publication venue - use that too!
 – be consistent! most online sources require cleanup including IEEE/ACM DLs
 • do pay attention to my instructions for checking reference consistency
 – http://www.cs.ubc.ca/~tmm/writing.html#refs
Sample outlines: Technique (diffs)

- **Abstract, Introduction (same as above)**
- **Related Work**
 - big focus on similar solutions, some discussion of similar problems (same task/data combo)
- **Data and Task Abstractions**
 - much shorter than the corresponding one for design studies, framing context not core contrib
- **Solution**
 - describing proposed idiom exactly, not justifying its use for particular domain problem
 - as above, analyze in terms of design choices, justify why appropriate vs alternatives
- **Implementation (same as above)**
- **Results**
 - less emphasis on scenarios with particular target users
 - more emphasis on characterizing the breadth of possible uses
 - still definitely include screenshots of the system in action
- **Discussion / Future Work, Conclusions, Bibliography (same as above)**
Sample outlines: Survey (diffs)

• Abstract (same as above)
• Introduction
 – discuss the scope of what you're covering, why it’s interesting/reasonable partition compared to visualization as a whole
• Related Work
 – only previous surveys
 • focus on how your work is similar to or different from them, especially wrt coverage
• Main
 – break up into sections based on your own synthesis of themes of work covered
 – you might want a Background section at the start if domain-focused survey
 • where there’s important vocabulary/ideas to establish before diving into main discussion
 – analyze visualizations proposed in these papers in terms of what/why/how framework
 • include images from papers
• Discussion / Future Work, Conclusions, Bibliography (same as above)
Sample outlines: Other types

• see page for implementation & analysis project types
 – implementation, analysis
 www.cs.ubc.ca/~tmm/courses/547-17F/projectdesc.html#outlines

• interactive explanations: meet with me in advance to discuss
Report marking

• required: at least material I’ve listed
 – you may include more material, you may choose alternate orderings

• probable marking scheme (may change!)
 • design study & technique: 12.5% each for
 – intro, related work, abstractions, solution, implementation, results, discussion, style
 – style: 10% main, 2.5% bibliography
 • survey: intro (10%), relwork (10%), main (60%), style (20%)
 • analysis: intro/domain (8%), abstr (8%), relwork (8%), analysis (52%), methods/tools (8%), discussion (8%), style (8%)

• reminder: project content is 60% of entire project mark
 – report is 25%, presentation is 15%
Code / Video

• required: submit your code
 – so I can see what you’ve done, but I will not post
 – include README file at root with brief roadmap/overview of organization
 • which parts are your code vs libraries
 • how to compile and run
 • I do not necessarily expect your code compiles on my machine

• encouraged but not required
 – submit live demo URL
 – open-source your code (if so, fine to just send me that URL)
 – submit supporting video
 • with or without voiceover
 • very nice to have later; software bitrot makes demos not last forever!
 – can be same or different from what you show in final presentation
Showcase image

• new this year: showcase image for projects page
 – 300x300 image
 – call it showcase.png or showcase.jpg
Logistics

• Assignments: Final Presentations on Canvas
 – upload due Tue Dec 12 6pm

• Assignments: Final Report on Canvas
 – upload due Fri Dec 15 11:59pm
 • required & posted: report, showcase image
 • required but not posted: code including README
 • encouraged: live demo URL, video
Final presentations

• context
 – CS department will be invited, also feel free to invite others
 – refreshments will be served, short breaks every hour (or so)
 – order: alphabetical by last name

• code freeze
 – no additional work on project after presentation deadline
 – additional three days to get it all written down coherently for final report
Final presentations: Tue Dec 15 1-5 FSC 2300A

• length
 – 15 min per team presentations, plus 1-2 min questions, 7 teams
 – 12 min per individual project presentations, plus 1-2 min questions, 2 people

• session structure
 – order alphabetical by first name, as on project page
 – 2 breaks, between each set of 3 presentations
 – in theory end by 4pm, reserve buffer of 1 hour extra since we often run over
 – dept invited, friends welcome, refreshments served

• presentation structure
 – slides required
 – demo or video encouraged
 • if plan is for demo, screenshots and/or video for backup strongly encouraged
 – but do practice, demos eat up time!
 – should be standalone
 • don’t assume audience has read proposal or updates (or remembers your pitch)

• slide upload
 – post your slides by 6pm if using your laptops (best), or by 11am if using mine
 – upload to Canvas Assignments: Final Presentations
Final presentations marking

• last year’s template
 – Intro/Framing:
 – Main:
 – Limitations/Critique/Lessons:
 – Slides:
 – Style:
 – Demo/Video:
 – Timing:
 – Question Handling:
Marking: Course overall

• 50% Project, summative assessment at end
 – 15% Final Presentation
 – 25% Final Report
 – 60% Content
 – (penalty to 20% for missed Milestones, pass/fail)
 • pitch, proposal, peer review 1, peer review 2

• 20% Presentations
 – 75% Content:
 • Summary 50%, Analysis 25%, Critique 25%
 – 25% Delivery:
 • Presentation Style 50%, Slide Quality 50%

• 30% Participation
 – 60% Written Questions
 • 6 weeks, 10% each
 – 40% In-Class Discussion & Group Work (pass/fail)
 • 4 weeks, 10% each

• marking by buckets
 – great 100%
 – good 89%
 – ok 78%
 – poor 67%
 – zero 0%
Come talk!

• encourage meeting with me to get advice/feedback before final present
 – chance to get feedback while you can still act on it
 – optional, not mandatory
 – do send email to schedule, can’t meet with all 10 teams in last few days!
Reproducible and Replicable Research
Reproducible research

• 5: 15 minutes with free tools
• 4: 15 minutes with proprietary tools
• 3: considerable effort
• 2: extreme effort
• 1: cannot seem to be reproduced
• 0: cannot be reproduced

Why bother with reproducibility

• moral high ground
 – for Science!

• enlightened self-interest
 – make your own life easier
 – you’ll be cited more often by academics
 – your work is more likely to be used by industry
Reproducibility: Levels to consider

• paper
 – post it online
 – make sure it stays accessible when you move on to new place

• algorithm
 – well documented in paper itself
 – document further with supplemental materials

• code
 – make available as open source
 – pick right spot on continuum of effort involved, from minimal to massive
 • just put it up warts and all, minimal documentation
 • well documented and tested
 • build a whole community
Reproducibility: Levels to consider, cont.

• data
 – make available
 • technique/algorithm: data used by system
 – tricky issue in visualization: data might not be yours to release!
 • evaluation: user study results
 – ethics approval possible if PII sanitized, typically needs advance planning

• parameters
 – how exactly to regenerate/produce figures, tables
 – example: http://www.cs.utah.edu/~gk/papers/vis03/
View from industry

• Increasing the Impact of Visualization Research panel, VIS 2017
 – Krist Wongsuphasawat, Data Visualization Scientist, Twitter

https://www.slideshare.net/kristw/increasing-the-impact-of-visualization-research
Replication: crisis in psychology, medicine, etc

• early rumblings left me with (ignorable) qualms
 – papers: Is most published research false?, Storks Deliver Babies (p= 0.008), The Earth is spherical (p < 0.05), False-Positive Psychology

• groundswell of change for what methods are considered legitimate
 – out
 • p-hacking / p-value fishing / data dredging
 • Hypothesizing After Results are Known (HARKing)
 – in
 • replication
 • pre-registration

– brouhaha with bimodal responses
 • some people doubling down and defending previous work
 • many willing to repudiate (their own) earlier styles of working
Remarkable introspection on methods

• thoughtful willingness to change standards of field
 – Andrew Gelman’s commentary on the Susan Fiske article
 • http://andrewgelman.com/2016/09/21/what-has-happened-down-here-is-the-winds-have-changed/
 – Simone Vazier’s entire Sometimes I’m Wrong blog
 • http://sometimesimwrong.typepad.com/
 • especially posts on topic Scientific Integrity
 – Joe Simmons Data Colada blog post What I Want Our Field to Prioritize
 • http://datacolada.org/53/
 – Dana Carvey’s brave statement on her previous power pose work
 • http://faculty.haas.berkeley.edu/dana_carney/pdf_My%20position%20on%20power%20poses.pdf
When and how will this storm hit visualization?

• they’re ahead of us
 – they have some paper retractions
 • we don’t (yet) have any retractions for methodological considerations
 – they agonize about difficulty of getting failure-to-replicate papers accepted
 • we hardly ever even try to do such work
 – they are a much older field
 • we’re younger: might our power hierarchies thus be less entrenched??…
 – they are higher profile
 • we don’t have vis research results appear regularly in major newspapers/magazines
 – they have rich fabric of blogs as major drivers of discussion
 • crosscutting traditional power hierarchies
 • we have far fewer active bloggers

• replication crisis will be focus of BELIV 2018 workshop at IEEE VIS
 – evaluation and BEyond - methodoLogIcal approaches for Visualization
 – http://beliv.cs.univie.ac.at/
Terrain of blog critiques

• meta: methods for methodological critique
 – Uri Simonsohn post Menchsplaining: Three Ideas for Civil Criticism
 • http://datacolada.org/52
 • don’t label, describe
 • don’t infer motives
 • reach out: contacting authors whose work you discuss before making things public
 – as a heuristic check on tone, imagine going to dinner with authors and their parents that night

• resonates with my own first foray into blog critique
 • https://tamaramunzner.wordpress.com/2016/01/16/on-the-memorability-debate/
 – tone check advice is spot on
 • I *did* go out to dinner with Stephen Few the night I wrote my blog posts!
 – leading me to pick my tone with suitable care
 – I did not reach out, but now I think it would be wise indeed
Other Courses
Visualization course in Psych

• Ron Rensink course
 Special Topics in Perception: Visual Display Design
• http://www2.psych.ubc.ca/~rensink/courses/psyc579/