Today
• Writing infovis papers: pitfalls to avoid
 – other research pitfalls and process
 • review reading, review writing, conference talks
 • final papers and final presentations
 – course paper vs research paper expectations
 – reproducible and replicable research
 – other course pitch: Rensink

Later pitfalls: Strategy
• What I Did Over My Summer Vacation
 – don’t focus on effort rather than contribution
 – don’t be too low level, it’s not a manual
• Least Publishable Unit
 – don’t aim too high beyond (your own) previous work
• Dense As Plutonium
 – don’t cram in so much content that can’t explain why/what/how
• Bad Slice and Dice
 – two papers split up wrong
 – neither is standalone, yet both repeat

Later pitfalls: Tactics
• Stealth Contributions
 – don’t leave them implicit, it’s your job to sell reader explicitly!
 – consider carefully, often different from original project goals
• Story-Free Captions
 – don’t use passive voice, leaves ambiguity about actor
 – must say why previous work doesn’t solve your problem
• Reproducible and Replicable Research
 – don’t leave unsaid should be obvious after close reading of previous work
 – don’t present tricks, do it

Later pitfalls: Results
• Unfinished By Time
 – choose level of detail for performance numbers
 • detailed graphs for technique papers, high-level for design & eval papers
• Gnarly Man Comparison
 – compare appropriately against state-of-the-art algorithms
 • head-to-head hardware is best (re-run benchmarks yourself, all on same machine)
• Tiny Toy Datasets
 – compare against state-of-the-art datasets sizes for technique (small ok for eval)
• But My Friends Liked It
 – asking labmates not convincing if target audience is domain experts
• Unjustified Tasks
 – use ecologically valid user study tasks; convincing abstraction of real-world use

Later pitfalls: Style
• Deadly Detail Dump
 – explain how only after what and why: provide high-level framing before low-level detail
• Story-Free Captions
 – don’t get fixated, try not to take it personally
• My Picture Speaks For Itself
 – explicitly walk them through images with discussion
• Grammar Is Optional
 – good low-level flow is necessary (but not sufficient), native speaker check good if ESL
• Mistakes Were Made
 – don’t use passive voice, leaves ambiguity about actor
 – your research contribution or done by others?

Final pitfalls: Style 2
• Jargon Attack
 – avoid where you can, defines on first use
 – all acronyms should be defined
• Nonspecific Use Of Large Numbers
• From High-Level Message to Which Details Worth Including
 – bonus points: new name for old technique

Final pitfalls: Submission
• Slimy Simultaneous Submission
 – often detected when same reviewer for both
 – instant dual submission, almost always detection via updated bib!
• Resubmit Unchanged
 – respond to previous reviews: often get reviewer overlap, irritated if ignored

Idiom pitfalls
• Unjustified Visual Encoding
 – should justify why visual encoding design choices appropriate for problem
• Unnecessary Clear Statement of Problem and Encoding
 – should characterize capabilities of new technique if proposed in paper
• Color Cacophony
 – avoid blatant disregard for basic color perception issues
 – huge areas of highly saturated color
 – categorical color coding for 15+ category levels
 – midrange without luminance differences
 – encoding 3 surpasses attributes with RGB
• Rainbows Just Like In The Sky
 – would have for ordered attribs, perceptual nonlinearity along rainbow gradient

Review reading pitfalls
• Reviewers Were Idiots
 – remember you’re only read the best of the best!
 – most new reviewers are overly harsh
• Reviewers Were Threatened By My Brilliance
 – seldom: unduly harsh since intimately familiar with area
• I Just Know Person X Wrote This Review
 – sometimes true, sometimes false
• You Didn’t Cite Me
 – stop and think whether it’s appropriate
 – be calm, not petulant
• You Didn’t Channel Me
 – don’t compare against paper you would have written
 – review the paper they submitted

Research Process & Pitfalls

Generalities
• encoding: visualization specific
• strategy: all research
• tactics: all research
• results: visualization specific
• style: all research, except
 – Story-Free Captions, My Picture Speaks For Itself

Contributions in research papers
• what are your research contributions?
 – what can we do that wasn’t possible before?
 – how can we do something better than before?
 – what do we know that was unknown or unclear before?
 – determines everything
 • from bonus points: new name for old technique
• often not obvious
 – diverged from original goals, in retrospect
 – state them explicitly and clearly in the introduction
 – don’t hope reviewer or reader will fill them in for you
 – don’t leave unsaid should be obvious after close reading of previous work
 – goal is clarity, not overwhelming (limitations typically later; in discussion section)

Thoughts on writing infovis papers
• Embrace feedback
• +1 and +2 reviews are often stronger as feedback
• +2 papers split up wrong
• don’t get fixated, try not to take it personally
• don’t get fixated, try not to take it personally
• don’t leave unsaid should be obvious after close reading of previous work
• don’t like it
• don’t get fixated, try not to take it personally
• don’t leave unsaid should be obvious after close reading of previous work
• don’t ignore previous work

Review writing pitfalls
• Uncalibrated Dismay
 – remember you’ve only read the best of the best!
 – most new reviewers are overly harsh
• It’s Been Done, Full Stop
 – you must say why did it in which paper, full citation is best
• You Didn’t Cite Me
 – stop and think whether it’s appropriate
 – be calm, not petulant
• You Didn’t Channel Me
 – don’t compare against paper you would have written
 – review the paper they submitted
Conference talk pitfalls

- Results As Dessert
 - don’t save until the end as a reward for the stalwart!
 - showcase early to motivate
- A Thousand Words, No Pictures
 - aggressively replace words with illustrations
- Full Coverage Or Bust
 - cover all details from paper
 - communicate big picture
 - ...as advertising convince them it’s worth their time to read paper!

Paper writing process suggestions

- **pre-paper talk**
 - write and give talk first, as if presenting at conference
 - iterate on talk slides to get structure, ordering, arguments right
- **post-paper talk**
 - then use paper outline from pre-talk draft of slides
 - encourages concise explanation of critical ideas, creation of key diagrams
 - provides stepping stones to visualize as a whole
 - easier to cut slides than you praised it over
- **pre-paper/practice talk feedback session**
 - global comments, then slide by slide detailed discussion
 - nurture culture of internal critique (build your own critical group if necessary)
 - have non-authors read paper before submitting
 - internal review can catch many problems
 - ideally group feedback session as above

Course requirements vs research paper standards

- **Research novelty not required**
- **Mid-level discussion of implementation is required**
 - part of my judgement is about how much work you did
 - high-level what tools etc did you use
 - medium level what pre-existing features did you adapt
- **Design justification is required**
 - (unless analysis/survey project)
 - different in flavour between design study projects and technique projects
 - technique exploration alone is not enough
- **Publication-level validation not required**
 - user studies, extensive computational benchmarks, utility to target audience

Sample outlines: Study design I

- **Introduction**
 - give big picture, establish scope, some background material might be appropriate
 - related work
 - include both work aimed at similar problems and similar solutions
 - no requirement for research novelty, but still frame how your work relates to it
- **Conclusions**
 - summarize what you’ve done
 - different than abstract since reader has seen all the details
- **Bibliography**
 - make sure to use real references for work that’s been published academically
 - much shorter than the corresponding one for design studies, framing correct not core facts
- **Solutions**
 - describing proposed ideas exactly, not justifying use for particular domain problem
 - as above, analyze in terms of design choices, justify why appropriate or alternatives
 - implementation (same as above)
- **Results**
 - two phases or scenarios with particular target users
 - more emphasis on characterizing the breadth of possible uses
 - cell definitely include screenshots of the system in action
 - Discussion / Future Work, Conclusions, Bibliography (same as above)

Sample outlines: Study design II

- **Data and task abstractions**
 - analyze your domain problem according to book framework (what/why)
 - include both domain-language descriptions and abstract versions
 - could split into data vs task, then domain vs abstract - or vice versa!
 - sketch out data first then task, so that can refer to data abstr within task abstr
- **Solutions**
 - describe your solution idiom (visual encoding and interaction)
 - analyze it according to book framework (how)
 - justify your design choices with respect to alternatives
 - if significant algorithm work, discuss algorithm and data structures

Sample outlines: Design study IV

- **Conclusions**
 - summarize what you’ve done
 - different than abstract since reader has seen all the details
- **Bibliography**
 - make sure to use real references for work that’s been published academically
 - much shorter than the corresponding one for design studies, framing correct not core facts
- **Solutions**
 - describing proposed ideas exactly, not justifying use for particular domain problem
 - as above, analyze in terms of design choices, justify why appropriate or alternatives
 - implementation (same as above)
- **Results**
 - two phases or scenarios with particular target users
 - more emphasis on characterizing the breadth of possible uses
 - cell definitely include screenshots of the system in action
 - Discussion / Future Work, Conclusions, Bibliography (same as above)

Sample outlines: Survey (diffs)

- **Abstract**
 - Introduction (same as above)
- **Related Work**
 - base on previous surveys, some discussion of similar problems (same table/diabonde)
- **Data and Task Abstractions**
 - as above, analyze in terms of design choices, justify why appropriate or alternatives
 - implementation (same as above)
- **Results**
 - two phases or scenarios with particular target users
 - more emphasis on characterizing the breadth of possible uses
 - cell definitely include screenshots of the system in action
 - Discussion / Future Work, Conclusions, Bibliography (same as above)

Sample outlines: Other types

- see page for implementation & analysis project types
- implementation: analysis

Paper marking

- required: at least material I’ve listed
 - implementation: more raw material, you may choose alternate orderings
- probable marking scheme (may change!)
 - design study & technique: 12.5% each for
 - intro, related work, abstractions, solution, implementation, results, discussion, style
 - style: 10% max, 2.5% bibliogaphy
 - survey intro: (10%), network: (10%), main: (60%), style (20%)
 - analysis: intro/diagram (8%), abstr: (8%), network: (8%), analysis (52%), methods/tools (42%), discussion (8%), style (8%)
 - reminder: project content is 60% of entire project mark
 - report is 25%, presentation is 15%

Code / Video

- required: submit your code
 - so I can see what you’ve done, but I will not post
 - include README file at root with brief roadmap/overview of organization
 - which parts any code is library: includes
 - how to compile and run
 - I do not necessarily expect your code compile on my machine
- encouraged but not required
 - submit live demo LUL
 - open-source your code (if so, fine to just send me that URL)
 - submit supporting video
 - web or without webserver
 - nice to have if you have your code on github, bitbucket, etc
 - can be same or different from what you show in final presentation

Showcase image

- new this year: showcase image for projects page
 - 100x100 image
 - call it showcase.png or showcase.jpg
Why bother with reproducibility
• moral high ground
 – for Science!
• enlightened self-interest
 – make your own life easier
 – you’ll be cited more often as academics
 – your work is more likely to be used by industry

Reproducibility: Levels to consider
• paper
 – post it online
 – make sure it stays accessible when you move on to new place
• algorithm
 – well documented in paper itself
 – document further with supplemental materials
• code
 – make available as open source
 – pick right spot on continuum of effort involved
 – just put it up online and wait
 – build a whole community

Reproducible research
• 5: 15 minutes with proprietary tools
• 4: 15 minutes with proprietary tools
• 3: considerable effort
• 2: 15 minutes with free tools
• 1: cannot seem to be reproduced
• 0: cannot be reproduced

View from industry
• Increasing the Impact of Visualization Research panel,ViS 2017
 – Krist Weng encompass, Data Visualization Scientists, Twitter

Terrain of blog critiques
• meta methods: for methodological critique
 – Uri Simonsohn post Mench’splaining: Three...Leading me to pick my tone with suitable care
 – I did not reach out, but now I think it would be wise indeed

Replication: crisis in psychology, medicine, etc
• early rumblings left me with (ignorable) qualms
 – papers: Is most published research false?
 – Storks Deliver Babies (p= 0.008), The Earth is spherical (p < 0.05), False-Positive Psychology
 – lead me to pick my tone with suitable care
 – I did not reach out, but now I think it would be wise indeed

Replication: crisis in psychology, medicine, etc
• Replication: crisis in psychology, medicine, etc
 – early rumblings left me with (ignorable) qualms
 – many willing to repudiate (their own) earlier styles of working

Why bother with reproducibility
• moral high ground
 – for Science!
• enlightened self-interest
 – make your own life easier
 – you’ll be cited more often as academics
 – your work is more likely to be used by industry

Reproducibility: Levels to consider
• paper
 – post it online
 – make sure it stays accessible when you move on to new place
• algorithm
 – well documented in paper itself
 – document further with supplemental materials
• code
 – make available as open source
 – pick right spot on continuum of effort involved
 – just put it up online and wait
 – build a whole community
Visualization course in Psych
• Ron Rensink course
 Special Topics in Perception: Visual Display Design
• http://www2.psych.ubc.ca/~rensink/courses/psych579/