\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Ch 7/10: Tables, Color Paper: D3 \\
Tamara Munzner \\
Department of Computer Science University of British Columbia \\
CPSC 547, Information Visualization \\
Week 5: 10 October 2017 \\
http://www.cs.ubc.ca/~tmm/courses/547-I7F
\end{tabular} \& \begin{tabular}{l}
This Time \\
- paper:ArteryViz (carryforward from last time) \\
- chapters:Tables, Color - some new material, not just backup slides \\
- paper: D3 -system context \\
- 3 shorter in-class exercises \\
-Two Numbers \\
-Bars/Radial \\
-Color Palettes
\end{tabular} \& \begin{tabular}{l}
Next Time \\
- to read \\
-VAD Ch. 8:Arrange Spatial Data \\
-VAD Ch. 9:Arrange Networks \\
-paper:ABySS-Explorer: visualizing genome sequence assemblies. Cydney B. Nielsen, Shaun D. Jackman, Inanc Birol, Steven J.M. Jones. TVCG I5(6):88I-8, 2009 (Proc. InfoVis 2009). \\
- [paper type: design study] \\
-paper: Interactive Visualization of Genealogical Graphs. Michael J.McGuffin, Ravin Balakrishnan. Proc. InfoVis 2005, pp 17-24. \\
- [paper type: technique] \\
- to prepare \\
-project pitches (3 min each)
\end{tabular} \& Ch 7: Arrange Tables \\
\hline \begin{tabular}{l}
VAD Ch 7:Arrange Tables \\
Encode

\end{tabular} \& \& Encode tables:Arrange space Encode

Arrange \& Arrange tables \\

\hline | Keys and values |
| :--- |
| - key |
| -independent attribute |
| -used as unique index to look up items |
| -simple tables: I key |
| -multidimensional tables: multiple keys |
| - value |
| -dependent attribute, value of cell |
| - classify arrangements by key count $-0,1,2$, many... |
| \rightarrow Tables |
| \rightarrow Multidimensional Table |
| \oplus Express Values $\rightarrow 1$ Key | \& | Idiom: scatterplot |
| :--- |
| - express values -quantitative attributes |
| no keys, only values -data $\text { - } 2 \text { quant attribs }$ |
| -mark: points -channels |
| - horiz + vert position |
| -tasks |
| - find trends, outliers, distribution, correlation, clusters -scalability |
| - hundreds of items | \& | Some keys: Categorical regions |
| :--- |
| - regions: contiguous bounded areas distinct from each other -using space to separate (proximity) |
| -following expressiveness principle for categorical attributes |
| - use ordered attribute to order and align regions | \& | Idiom: bar chart |
| :--- |
| - one key, one value -data |
| - I categ attrib, I quant attrib? -mark: lines |
| -channels |
| - length to express quant value |
| - spatial regions: one per mark - separated horizontally, aligned vertically - ordered by quant attrib |
| " by label (alphabetical), by length attrib (data-driven) |
| -task |
| - compare, lookup values |
| -scalability |
| - dozens to hundreds of levels for key attrib | \\

\hline | Separated and Aligned but not Ordered |
| :--- |
| LIMITATION: Hard to know rank. What's the $4^{\text {th }}$ most? The $7^{\text {th }}$? | \& Separated, Aligned and Ordered \& | Separated but not Ordered or Aligned |
| :--- |
| LIMITATION: Hard to make comparisons | \& | Idiom: stacked bar chart |
| :--- |
| - one more key |
| -data |
| - 2 categ atrib, 1 quant attrib |
| -mark: vertical stack of line marks |
| - glyph: composite object, internal structure from multiple marks |
| -channels |
| - length and color hue |
| Using Visualization to Understand the |
| - spatial regions: one per glyph |
| Behavior of Computer Systems. Bosch. Ph.D. |
| - aligned: full glyph, lowest bar component thesis, Stanford Computer Science, 2001.] |
| -task |
| - part-to-whole relationship |
| -scalability | \\

\hline
\end{tabular}

Idiom: streamgraph - generalized stacked graph -emphasizing horizontal continuit - vs vertical items -data IStacked Graphs Geometry \& Aesthetics. Byron and Wattenberg. - I categ key attrib (artist) 2008) I4(6): I $245-1252$, (2008).] - I ordered key attrib (time) - I quant value attrib (counts) -derived data - geometry: layers, where height encodes counts - I quant attrib (layer ordering) -scalability - hundreds of time keys - dozens to hundreds of artist keys - more than stacked bars, since most layers don't extend across whole chart	Idiom: line chart / dot plot - one key, one value -data - 2 quant attribs -mark: points - line connection marks between them -channels - aligned lengths to express quant value - separated and ordered by key attrib into horizontal regions -task - find trend connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next -scalability - hundreds of key levels, hundreds of value levels	Choosing bar vs line charts - depends on type of key attrib -bar charts if categorical -line charts if ordered - do not use line charts for categorical key attribs -violates expressiveness principle	Chart axes - labelled axis is critical - avoid cropping y-axis -include 0 at bottom left - or slope misleads - dual axes controversial -acceptable if commensurate -beware, very easy to mislead!
Idiom: connected scatterplots - scatterplot with line connection marks -popular in journalism -horiz + vert axes: value attribs -line connection marks: temporal order -alternative to dual-axis charts - horiz: time - vert: two value attribs - empirical study - engaging, but correlation unclear	Idiom: Indexed line charts - data: 2 quant attires - I key + I value - derived data: new quant value attrib -index - plot instead of original value - task: show change over time -principle: normalized, not absolute - scalability - same as standard line chart	Idiom: Gantt charts - one key, two (related) values -data - I categ attrib, 2 quant attribs -mark: line length: duration - channels - horiz position: start /end times - horiz length: duration - task emphasize temporal overlaps, start/end dependencies between items -scalability - dozens of key levels - hundreds of value levels	Idiom: heatmap - two keys, one value -data - 2 categ attribs (gene, experimental condition) - I quant attrib (expression levels) -marks: area - separate and align in 2D matrix -indexed by 2 categorical attributes -channels -task - find clusters, outliers -scalability - IM items, 100 s of categ levels, ~ 10 quant attrib levels
Idiom: cluster heatmap - in addition -derived data - 2 cluster hierarchies -dendrogram - parent-child relationships in tree with connection line marks - leaves aligned so interior branch heights easy to compare -heatmap - marks (re-)ordered by cluster hierarchy traversal	Θ Axis Orientation \rightarrow Rectilinear \rightarrow Parallel \rightarrow Radia	Idioms: scatterplot matrix, parallel coordinates - scatterplot matrix (SPLOM) -rectilinear axes, point mark -all possible pairs of axes -scalability - one dozen attribs - dozens to hundreds of items - parallel coordinates -parallel axes, jagged line representing item -rectilinear axes, item as point - axis ordering is major challenge -scalability - dozens of attribs - hundreds of items	
Idioms: radial bar chart, star plot - radial bar chart -radial axes meet at central ring, line mark - star plot -radial axes, meet at central point, line mark - bar chart -rectilinear axes, aligned vertically - accuracy -length unaligned with radial - less accurate than aligned with rectilinear	Idioms: pie chart, polar area chart - pie chart -area marks with angle channel -accuracy: angle/area less accurate than line length - arclength also less accurate than line length - polar area chart -area marks with length channel -more direct analog to bar charts - data -I categ key attrib, I quant value attrib - task -part-to-whole judgements [A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3-28.] 30	Idioms: normalized stacked bar chart - task -part-to-whole judgements - normalized stacked bar chart -stacked bar chart, normalized to full vert height -single stacked bar equivalent to full pie - high information density: requires narrow rectangle - pie chart -information density: requires large circle	Idiom: glyphmaps

Orientation limitations
2 axes 3 problematic -more in a fierroon
$4+$ impossible

- parallel: unfamiliarity, training time
- radial: perceptual limits -angles lower precision than lengths
-asymmetry between angle and length - can be exploited!

Categorical vs ordered color

Opponent color and color deficiency
percepual processing before otic nerv -one achromatic luminance channel (L^{*})
-edge detection through luminance contrast chroma channels
-red-green $\left(a^{*}\right) \&$ yellow-blue axis (b*)
color blind": one axis has degraded acuit

Color deficiency: Reduces color to 2 dimensions

Designing for color deficiency: Blue-Orange is safe

Ch 10: Map Color and Other Channels
VAD Chap IO: Map Color and Other Channels

Encode Map	
® Color	(®) Size, Angle, Curature,
\rightarrow Colorfroding	\rightarrow length
	\rightarrow Angle 1/
\rightarrow Color map	\rightarrow Alea $\cdot \boldsymbol{\square} \boldsymbol{\square}$
-amor	\rightarrow Curatue (1))
dex	\rightarrow volume
	(®)S
+	+ - ■ -
	© Motion
	$\rightarrow \underset{\text { Direction, Rate, }}{\text { Motion }} \bullet \bullet \bullet \bullet$

Luminance

- need luminance for edge detection
-fine-grained detail only visible through luminance contrast
- intrinsic perceptual ordering

Designing for color deficiency:Avoid encoding by hue alone

- Change the shape
- Vary luminance

Color/Lightness constancy: Illumination conditions

