Ch 7: Arrange Tables

Idiom: bar chart
• one key, one value
 • data
 • 1 categ attrib, 1 quant attrib
 • mark: lines
 • regions: contiguous bounded areas distinct from each other
 • express values
 • 0, 1, 11, 25, 50, 75, 100
 • some keys: Categorical regions
 • regions: contiguous bounded areas distinct from each other
 • express values
 • regions: contiguous bounded areas distinct from each other
 • express values
 • regions: contiguous bounded areas distinct from each other
 • express values
 • 0, 1, 2, 3, 5, 4

Idiom: stacked bar chart
• one more key
 • data
 • 2 categ attrib, 1 quant attrib
 • mark: vertical stack of lines
 • channels
 • length and color hue
 • spatial regions: one per mark
 • oriented by quant attrib
 • aligned by categ attrib
 • by label (alphabetical) by length attrib (data-driven)
 • task
 • compare, lookup values
 • scalability
 • dozens to hundreds of levels for key attrib

Some keys: Categorical regions
• regions: contiguous bounded areas distinct from each other
 • express values
 • regions: contiguous bounded areas distinct from each other
 • express values
 • regions: contiguous bounded areas distinct from each other
 • express values
 • regions: contiguous bounded areas distinct from each other
 • express values
 • 0, 1, 2, 3, 5, 4

Encoded tables: Arrange space
• Arrange
 • Express
 • Separate
 • Order
 • Align

Dense Arrangement
• 3 shorter in-class exercises
 • Two Numbers
 • Bars/Radial
 • Color Palettes

Separation, Order, Align Regions
• Separate
• Order
• Align

Arrangement
• Reverse
• Parallel
• Random
• Space Filling

Layout Density
• Compact
• General

Ch 7: Tables, Color
Paper: D3

Ch 7/10: Tables, Color
Paper: D3
Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Week 5: 10 October 2017

Idiom: scatterplot
• Express Values
 • Express Values
 • 0, 1, 2, 3, 5, 4

Ch 7: Arrange Tables

Ch 7: Tables, Color
Paper: D3

Ch 7/10: Tables, Color
Paper: D3
Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Week 5: 10 October 2017

Idiom: stacked bar chart
• one more key
 • data
 • 2 categ attrib, 1 quant attrib
 • mark: vertical stack of lines
 • channels
 • length and color hue
 • spatial regions: one per glyph
 • aligned by quant attrib, lowest bar component
 • aligned by categ attrib, bottom bar component
 • task
 • part-to-whole relationship
 • scalability
 • several to one dozen levels for stacked attrib

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

Ch 7: Tables, Color
Paper: D3

Ch 7/10: Tables, Color
Paper: D3
Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Week 5: 10 October 2017

Idiom: stacked bar chart
• one more key
 • data
 • 2 categ attrib, 1 quant attrib
 • mark: vertical stack of lines
 • channels
 • length and color hue
 • spatial regions: one per glyph
 • aligned by quant attrib, lowest bar component
 • aligned by categ attrib, bottom bar component
 • task
 • part-to-whole relationship
 • scalability
 • several to one dozen levels for stacked attrib

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

Ch 7: Tables, Color
Paper: D3

Ch 7/10: Tables, Color
Paper: D3
Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Week 5: 10 October 2017

Idiom: stacked bar chart
• one more key
 • data
 • 2 categ attrib, 1 quant attrib
 • mark: vertical stack of lines
 • channels
 • length and color hue
 • spatial regions: one per glyph
 • aligned by quant attrib, lowest bar component
 • aligned by categ attrib, bottom bar component
 • task
 • part-to-whole relationship
 • scalability
 • several to one dozen levels for stacked attrib

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

Ch 7: Tables, Color
Paper: D3

Ch 7/10: Tables, Color
Paper: D3
Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Week 5: 10 October 2017

Idiom: stacked bar chart
• one more key
 • data
 • 2 categ attrib, 1 quant attrib
 • mark: vertical stack of lines
 • channels
 • length and color hue
 • spatial regions: one per glyph
 • aligned by quant attrib, lowest bar component
 • aligned by categ attrib, bottom bar component
 • task
 • part-to-whole relationship
 • scalability
 • several to one dozen levels for stacked attrib

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

Ch 7: Tables, Color
Paper: D3

Ch 7/10: Tables, Color
Paper: D3
Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Week 5: 10 October 2017

Idiom: stacked bar chart
• one more key
 • data
 • 2 categ attrib, 1 quant attrib
 • mark: vertical stack of lines
 • channels
 • length and color hue
 • spatial regions: one per glyph
 • aligned by quant attrib, lowest bar component
 • aligned by categ attrib, bottom bar component
 • task
 • part-to-whole relationship
 • scalability
 • several to one dozen levels for stacked attrib

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

Ch 7: Tables, Color
Paper: D3

Ch 7/10: Tables, Color
Paper: D3
Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Week 5: 10 October 2017

Idiom: stacked bar chart
• one more key
 • data
 • 2 categ attrib, 1 quant attrib
 • mark: vertical stack of lines
 • channels
 • length and color hue
 • spatial regions: one per glyph
 • aligned by quant attrib, lowest bar component
 • aligned by categ attrib, bottom bar component
 • task
 • part-to-whole relationship
 • scalability
 • several to one dozen levels for stacked attrib

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

Ch 7: Tables, Color
Paper: D3

Ch 7/10: Tables, Color
Paper: D3
Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Week 5: 10 October 2017

Idiom: stacked bar chart
• one more key
 • data
 • 2 categ attrib, 1 quant attrib
 • mark: vertical stack of lines
 • channels
 • length and color hue
 • spatial regions: one per glyph
 • aligned by quant attrib, lowest bar component
 • aligned by categ attrib, bottom bar component
 • task
 • part-to-whole relationship
 • scalability
 • several to one dozen levels for stacked attrib

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

Ch 7: Tables, Color
Paper: D3

Ch 7/10: Tables, Color
Paper: D3
Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Week 5: 10 October 2017

Idiom: stacked bar chart
• one more key
 • data
 • 2 categ attrib, 1 quant attrib
 • mark: vertical stack of lines
 • channels
 • length and color hue
 • spatial regions: one per glyph
 • aligned by quant attrib, lowest bar component
 • aligned by categ attrib, bottom bar component
 • task
 • part-to-whole relationship
 • scalability
 • several to one dozen levels for stacked attrib

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

Ch 7: Tables, Color
Paper: D3

Ch 7/10: Tables, Color
Paper: D3
Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Week 5: 10 October 2017

Idiom: stacked bar chart
• one more key
 • data
 • 2 categ attrib, 1 quant attrib
 • mark: vertical stack of lines
 • channels
 • length and color hue
 • spatial regions: one per glyph
 • aligned by quant attrib, lowest bar component
 • aligned by categ attrib, bottom bar component
 • task
 • part-to-whole relationship
 • scalability
 • several to one dozen levels for stacked attrib

LIMITATION: Hard to know rank. What's the 4th most? The 7th?
Many Keys
Recursive Subdivision

Idiom: line chart / dot plot
- one key, one value
 - data
 - 2 quant attributes
 - mark types
 - line connection marks between them
 - aligned lengths to express quant value
 - separated and ordered by key strata into horizontal regions
 - task:
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly drawing relationship between data and the axis
 - scalability
 - hundreds of key levels, hundreds of value levels

Idiom: Gantt charts
- one key, two (related) values
 - data
 - 1 categ strata, 2 quant strata
 - mark line
 - channels
 - horizon position starts/ends times
 - horizon length: duration
 - task:
 - emphasize temporal overlaps, highlighted dependencies between items
 - scalability
 - dozens of key levels
 - hundreds of value levels

Choosing bar vs line charts
- depends on type of key attrib
 - bar charts if categorical
 - line charts ordered
 - do not use line charts for categorical key attribs
 - violations expressions principle
 - implications of trend so strong that it overrules semantics!
 - The more rude a person is, the older he is!

Idiom: connected scatterplots
- scatterplot with line connection marks
 - popular in journalism
 - horz + vert axes: value attribs
 - line connection marks: temporal order
 - alternative to dual-axis charts
 - horizon time
 - vert: two-value attrib
 - empirical study
 - engaging but correlation unclear

Idiom: indexed line charts
- data: 2 quant attributes
 - connection
 - derived data: new quant value attrib
 - index plot instead of original value
 - task: show change over time
 - principle: normalized, not absolute
 - scalability
 - some as standard line chart

Idiom: clustered bar chart, star plot
- radial bar chart
 - radial bars meet at central ring, line mark
- star plot
 - radial axes, at central point, line mark
- bar chart
 - rectilinear axes, aligned vertically
- accuracy
 - length unaligned with radial
 - less accurate than aligned with rectilinear

Idiom: radial bar chart, star plot
- radial bar chart
 - radial bars meet at central ring, line mark
- star plot
 - radial axes, at central point, line mark
- bar chart
 - rectilinear axes, aligned vertically
- accuracy
 - length unaligned with radial
 - less accurate than aligned with rectilinear

Idiom: glyphmaps
- rectilinear good for linear vs nonlinear trends
- radial good for cyclic patterns

Chart axes
- labelled axis is critical
- avoid cropping y-axis
- include 0 at bottom left
- or slope misleads
- dual axes controversial
- acceptable if commensurate
- beware, very easy to mislead!

Idiom: bar chart
- data
 - 2 quant attribs (gene, experiment condition)
 - 1 quant attrib (expression level)
- mark: area: separate and align in 2D matrix
- channels
 - color: by quant attrib
 - (polar/emptying diameter)
 - task:
 - find clusters, outliers
 - scalability
 - 1M items, 100s of categ levels, ~10 quant attrib levels

Idiom: box chart
- data
 - 4 quant attribs, single quant attrib
 - channels
 - color: by quant attrib
 - (polar/emptying diameter)
 - task:
 - find clusters, outliers
 - scalability
 - 1M items, 100s of categ levels, ~10 quant attrib levels

Idiom: normal stacked bar chart
- task
 - part-whole judgements
- normalized stacked bar chart
 - normalized stacked bar chart, normalized to full vert height
 - single stacked bar equivalent to full pie
 - high information density: requires narrow rectangles
- pie chart
 - information density requires large circle

Idiom: idiom: pie chart, polar area chart
- pie chart
 - area marked with single channel
 - accuracy: angles less accurate than line length
 - arc length less accurate than straight line
- polar area chart
 - area marked with length channel
 - more direct analog to bar charts
- data
 - 1 categ key, 1 quant value attrib
 - task
 - part-whole judgements

Idiom: idiom:釉
- generalization of stacked graph
 - emphasizing horizontal continuity
 - vs vertical items
 - data
 - 1 categ key attrib (strip)
 - 1 ordered key attrib (line)
 - 1 quant value attrib (counts)
 - derived data
 - geometry layers, where height encodes counts
 - 1 quant attrib (layer ordering)
 - scalability
 - hundreds of tine keys
 - dozens to hundreds of artex keys
 - more than stacked bar, some main layers don't extend across whole chart

Idiom: clustered bar chart, star plot
- radial bar chart
 - radial bars meet at central ring, line mark
- star plot
 - radial axes, at central point, line mark
- bar chart
 - rectilinear axes, aligned vertically
- accuracy
 - length unaligned with radial
 - less accurate than aligned with rectilinear

Idiom: heatmap
- two keys, one value
 - data
 - 1 categ attrib (gene, experiment condition)
 - 1 quant attrib (expression level)
- mark: area
 - separate and align in 2D matrix
- channels
 - color: by quant attrib
 - (polar/emptying diameter)
 - task:
 - find clusters, outliers
 - scalability
 - 1M items, 100s of categ levels, ~10 quant attrib levels

Idiom: biplot
- data
 - 2 quant attribs (gene, experiment condition)
 - 1 quant attrib (expression level)
- mark: area: separate and align in 2D matrix
- channels
 - color: by quant attrib
 - (polar/emptying diameter)
 - task:
 - find clusters, outliers
 - scalability
 - 1M items, 100s of categ levels, ~10 quant attrib levels

Idiom: treemaps
- data
 - 3 quant attribs (gene, experiment condition)
 - 1 quant attrib (expression level)
- mark: area: separate and align in 2D matrix
- channels
 - color: by quant attrib
 - (polar/emptying diameter)
 - task:
 - find clusters, outliers
 - scalability
 - 1M items, 100s of categ levels, ~10 quant attrib levels

Idiom: radar chart
- data
 - 3 quant attribs (gene, experiment condition)
 - 1 quant attrib (expression level)
- mark: area: separate and align in 2D matrix
- channels
 - color: by quant attrib
 - (polar/emptying diameter)
 - task:
 - find clusters, outliers
 - scalability
 - 1M items, 100s of categ levels, ~10 quant attrib levels
Orientation limitations:
- rectilinear: scalability w.r.t. fluxes
 - 2 axes best
 - 3 problematic
 - more in number
 - 4 impossible
- radial: unfamiliarity, training time
 - radial perceptual limits
 - angles lower precision than lengths
 - symmetry between angle and length

- can be exploited!

Decomposing color:
- first rule of color: do not talk about color!
 - color is confusing if treated as monolithic
- decompose into three channels
 - ordered can show magnitude
 - saturation: how colorful
 - categorical can show identity
 - hue: what color
- channels have different properties
 - what they convey directly to perceptual system
 - how much they can convey: how many discriminable bins can we use?

Opponent color and color deficiency:
- perceptual processing before optic nerve
 - one achromatic luminance channel
 - 2 chromatic channels
 - red-green (r') and yellow-blue (b')
 - "color blind": one axis has degraded acuity
 - 8% of men are red-green color deficient
 - blue/yellow is rare

Color spaces:
- CIE L*a*b*: good for computation
 - L*: lightness (L) or value (V)
 - a* and b* axes: perceptually linear but nonintuitive
 - a*b* axes: perceptually linear but nonintuitive
 - L* intuitive: perceptually linear luminance
 - CIELAB: area under bell curve

Designing for color deficiency:
- Blue-Orange is safe
- Reduces color to 2 dimensions

Ch 10: Map Color and Other Channels

Spectral sensitivity

Luminance
- need luminance for edge detection
 - fine-grained detail only visible through luminance contrast
 - legible text requires luminance contrast!
- intrinsic perceptual ordering

Color encoding:
- Map
 - Categorical can show identity
 - Ordered can show magnitude

Designing for color deficiency: Avoid encoding by hue alone
- redundantly encode
 - vary luminance
 - change shape

Color deficiency: Blue-Orange is safe
- color constancy: simultaneous contrast effect

Bezold Effect: Outlines matter

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann

Visible Spectrum

Deuteranope simulation

Diverging

Normal vision

Protanope

Tritanope

Normalization Information

Color Information

Corners of the RGB color cube

Luminance Information

L from HLS

All the same

Layout Density

Dense

Chromatic Information

Color information

Dense software overviews

(Extracted from "Advanced Color Principles & Practices.
Stone.Tableau Customer Conference 2014")
Map other channels
- **Size**
 - length accurate, 2D area ok, 3D volume poor
 - nonlinear accuracy
 - horizontal, vertical, exact diagonal
- **Angle**
 - complex combination of lower-level primitives
 - many bins
 - highly separable against static
 - binary; good for highlighting
- **Shape**
 - motion
- **Color/Lightness constancy: Illumination conditions**
 - Color/Lightness constancy: Illumination conditions
 - Illumination conditions
 - Color/Lightness constancy: Illumination conditions
 - Color/Lightness constancy: Illumination conditions

Ordered color:
- **Light constancy:**
 - Rainbow is poor default
 - Highly separable against static
 - Good for highlighting
 - Use with caution!

Colormaps
- **Color/Lightness constancy: Illumination conditions**
 - Color/Lightness constancy: Illumination conditions
 - Illumination conditions
 - Color/Lightness constancy: Illumination conditions
 - Color/Lightness constancy: Illumination conditions

Paper: D3
- **Paper types**
 - Design studies
 - Technique/algorithm
 - Evaluation
 - Model/taxonomy
 - System
WebGL/OpenGL
• graphics library
 – pros
 – power and flexibility, control over WebGL
 – declarative
 – arbitrary interactive scene
 – arbitrary scene complexity

Processing / p5.js
• layer on top of WebGL
• visualization esp. for artists/designers
• pros
 – great sandbox for rapid prototyping
 – huge user community, great documentation
• cons
 – poor/wide library support
 – example app: MiBoe

prefuse
• infovis toolkit, in Java
• fine-grained building blocks for tailored visualizations
• pros
 – heavily used (previously)
 – very powerful abstractions
 – quickly implement most techniques covered so far
• cons
 – no longer active
 – non-trivial learning curve
• example app: DOI Tress Revisited

D3 Features
• document transformation as atomic operation
 – scene changes vs representation of scenes themselves
• declarative: what
 – Protovis, D3
• declarative: when
 – data joins bind input data to elements
• declarative: where
 – visual representation

[Fig 5. Munzner et al. TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed

InfoVis Reference Model
• conceptual model underlies design of prefuse and many other toolkits
 – data tables, networks
 – also infovis pipeline, data state model

[Fig 2. Interactions and Memory in Visual Information Seeking. Using Main Street, Chapter 1. Morgan-Kaufmann, 1999]

D3
• declarative infovis toolkit, in javascript
• D3 meets Document Object Model
 – pros
 – seamless interoperability with Web

Protovis
• declarative infovis toolkit, in Javascript
 – marks with inherited properties
• pros
 – runs in browser
 – familiar programming model
 – much more interaction, geospatial, trees,
• cons
 – not all kinds of operations supported
 • example app: NapkinVis (2009 course project)

Next Time
• to read
 – VAD Ch. 8: Arrange Spatial Data
 – VAD Ch. 9: Arrange Networks

Toolkits
• imperative: how
 – low-level rendering: Processing, OpenGL
 – parametrized visual objects: prefuse
 – also flare: prefuse for Flash

• declarative: what
 – Protovis, D3
 – separation of specification from execution

• considerations
 – expressiveness
 – can’t build it
 – efficiency
 – how long will it take?
• declarative: where
 – visual form: layout, color, size, ...

• declarative: when
 – data joins bind input data to elements
 – data binding to scenegraph elements
 – operators act on selections to modify content