Ch 8/9: Spatial Data, Networks
Paper: Genealogical Graphs Paper: ABySS-Explorer

Tamara Munzner

Department of Computer Science
University of British Columbia
University of British C
cpsc 547 , Information Visulazation
Week $6: 17$ October 2017

News
marks for previous 2 weeks published -first week was pass/fail for having anything -now more fine-grained guidance about expectations with comments

- if you didnt get full credit - if you didn't get full credit
-in general: don't just summarize
- today
--pitches first
Q\&A, lecture second

Ch 8: Arrange Spatial Data
(

Idiom: Bayesian surprise maps

- use models of expectations to highlight surprising values confounds (population) and variance (sparsity)
- contounds (population) and variance (sparsity)
\rightarrow How clyphs (local) $\xrightarrow[\rightarrow]{\rightarrow} \rightarrow$ Textures (denses seeds)

Idiom: topographic map

Arrange spatial data
Θ Use Given
$\xrightarrow[\substack{\text { Geometry } \\ \rightarrow \text { Geographic } \\ \rightarrow \text { Other Derived }}]{ }$
\rightarrow Spatial Fields
$\xrightarrow{\rightarrow}$ Spatial Falar fields (one value percell) \rightarrow Scalar Fields (one en
$\rightarrow \rightarrow$ ㄱirect Volume e endering

- data
-geographic geometry -scalar spatial field
-1 quant atrribute per grid cell
derived data
isoline geometry
specitocurs computed for
specels of scalar values

Idiom: similarity-clustered streamlines

$\stackrel{- \text { data }}{-3 \mathrm{D}}$
data
-3 D vector field

- derived data (from field)
-streamlines: trajectory particle will follow
- serived data (per streamline)
- curvature, torsion, tortuosity
-signature: complex weighted combination
- compute cluster hierarchy across all signatures -encode: color and opacaity by cluster
tasks
wery shape
scalability
illions of sam
of samples, hundreds of
Idiom: sfdp (multi-level force-directed placement) - data
data
-original: network
-original: network
-derived: cluster hierarchy atop it
- considerations
-better algorithm for same encoding
-better algor
- same:fundamental use of space - hierarchy used for algority
not shown explicitly not shown expicicty
(more on algorithm us encoding in a atern
- scalability
-nodes, edges: IK-10K
-hairball problem eventually hits

Idiom: force-directed placement
- visual encoding
- link connection
- considerations
-spatial position: no meaning d dit matks
left ree
$\underset{\substack{\text { - proximity semantics? } \\ \text {. someimes meaninful }}}{\text { - }}$

- tasks
- tasks
-explore topology; locate paths, clusters
- scalability
-node/edge density $\mathrm{E}<4 \mathrm{~N}$

Idiom: adjacency matrix view - data: network -transform into same data/encoding as heatmap - derived data: table from network - I quant attrib - weighted edge between nodes -2 categ attribs: node list $\times 2$ - visual encoding -cell shows presence/absence of edge - scalability - IK nodes, IM edges	Connection vs. adjacency comparison - adjacency matrix strengths -predictability, scalability, supports reordering -some topology tasks trainable - node-link diagram strengths -topology understanding, path tracing -intuitive, no training needed - empirical study -node-link best for small networks -matrix best for large networks - if tasks don't involve topological structure! [On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Ghoniem, Fekete, and Castagliola. Information Visualization 4:2 (2005), I 14 - 135 .]	Idiom: radial node-link tree - data -tree - encoding -link connection marks -point node marks -radial axis orientation - angular proximity: siblings - distance from center: depth in tree - tasks -understanding topology, following paths - scalability	Idiom: treemap - data -tree - I quant attrib at leaf nodes - encoding -area containment marks for hierarchical structure -rectilinear orientation -size encodes quant attrib - tasks -query attribute at leaf nodes - scalability - IM leaf nodes
Link marks: Connection and containment - marks as links (vs. nodes) -common case in network drawing -ID case: connection - ex: all node-link diagrams - emphasizes topology, path tracing - networks and trees -2D case: containment - ex: all treemap variants - emphasizes attribute values at leaves (size coding) - only trees	Tree drawing idioms comparison - data shown - link relationships - tree depth - sibling order - design choices - connection vs containment link marks - rectilinear vs radial layout - spatial position channels - considerations - redundant? arbitrary? - information density?	Paper: Genealogical	Genealogical graphs:Technique paper - family tree is a misnomer -single person has tree of ancestors, tree of descendants -pedigree collapse inevitable - diamond in ancestor graph - crowding problem -exponential - fractal layout -poor info density -no spatial ordering for generations [Fig 2, 6, 7. Interactive Visualization of Genealogical Graphs. Michael J. McGuffin, Ravin Balakrishnan. Proc. InfoVis 2005, pp 17-24.] 24
Layouts - rooted trees: standard layouts -connection -containment -adjacent aligned position -indented position	Layouts	Dual trees abstraction - explore canonical subsets and combinations, easy to interpret, scales well - no crossings, nodes ordered by generation - doubly rooted: x leftmost descend, y rightmost ancestor -offset roots from hourgass diagram	Indented, flipped, combined
Another example - vertical connection - horizontal connection - indented - upcoming chapters -layering -aggregation	Interaction as fundamental to design - navigation -topological navigation via collapse/expand on selection - parents, children - expand can triger rotation - collapsing others - layout driven by navigation -geometric zoom/pan -constrained navigation: automatic camera framing - animated transitions -3 phases: fade out, move, fade in - mouseover hover -preview dots: expand if collapsed	Custom widget - popup marking menu -flick up or down, ballistic -subtree drag-out widget	Paper: ABySS-Explorer

ABySS-Explorer: Design stuc

-go from short - go from sho
sequences

㲘 for visual inspection and manual editing
-ar visual inspecties, like repeetitions longer than read length - data, domain:abstract
data, domain:abstract
-millions of reads of $25-100$ nucleotides (nt): strings -read coverage, proxy for quality: quant attrib -read pairing distances, proxy for size distribution: quant

Contig coverage: encoding

rejected options: luminance/lightness

- not distinguishable given denseness variation from wave shapes - also problematic with desire for separable color/hue encoding - chosen: line thickness
-not distinguishable for extremely long contigs
can address by adjusting oscillation frequency to suitable size

Contigs: abstraction as derived network data

- derived data: de Bruijn graph/network
directed network, compact representation of sequence overlaps -node: contig
-edge: overlap of $k-1$ nt between two contigs
-good for computing, bad for reasoning about sequence space
- derived data: dual de Bruijn graph
-node: points of contig overlap
-edge: contig
-better match
-better match for arrow diagrams used in hand drawn sketches base layout: force-directed

Read pairs: encoding	${ }^{\text {(1) }}$ (ean
- data:	${ }^{*}$
-distance estimate	
-orientation	3 Nm
- encoding:	
-dashed line (shape channel for line mark) - implying inferred vs observed sequences	
- color for both dashed line and contig leaf	
-[same length as for contigs]	
-rejected initial option: line color alone - too ambiguous	
-interaction to fully resolve remaining ambiguity -or color by unambiguous paths in grey	\sim

DNA as double stranded: idiom for encoding \& interaction
rejected option: 2 nodes per contig

- excess clutter if one for each direction
-choice at data abstraction level
encoding \& interaction idiom: polar node
-encoding: upper vs lower attachment point
- redundant with arc direction
- largescsal evisiblity without need to zoom - large.s.sale visibility withour
arbitrary but consistent
- interaction: click to reverse direction
- switches polarity of vertex conections
switches polarity of vertex connections
changes sign of label

Displaying meta-data

- reserve color for additional attributes
ex: color to compare reference human to
lymphoma genome
-inconsistencies visible as interconnections between
different colors
-interaction to check if error in metadata from
experiments vs assembly
read pair info supports metadati
read pair into supports mera
-speeeup clim vs prev work

Contig length: encoding
rejected option: scale edge lengths by sequence lengths -short contigs are important sources of ambiguity, would be hard to distinguish task guidance: only low-res judgements needed, relatively long or short
encoding idiom: wave pattern
-oscillation shows fixed number, shapes distinguishable

- min amplitude at connections so edges visible
-orientation with max amplitude asymmerric wrt start
-rejected intial option: max in middle
rected options:
- color (keep for other atatribute) ${ }^{-}$- char-intinature (used for polar nodes)
aligned with empirical guidance for tapered edges

Assembly examples

```
ideal: single large contig
-overview/gist: many small contigs remain
```

- interaction to resolve
integrate paired read highlighting on top
of contig paths strucure
integrate paired read highl
of contig paths structure
(घ)
(0)
$\sim r$

Nr minnum

