Analyzing the Training Processes of Deep Generative Models

Mengchen Liu, Jiaxin Shi, Kelei Cao, Jun Zhu, Shixia Liu

Presented by:
Gursimran Singh
Department of Computer Science
University of British Columbia
Background – deep neural networks

Output: \[y_i = f(w_1^1 x_1 + w_2^1 x_2 + w_3^1 x_3 + \cdots + w_m^1 x_m) \]
\[= f(\sum_j w_j^1 x_j) \]
Background – dnn training

• Training in deep neural networks
What to visualize - data

• Network diagram of neurons and its characteristics
 • activations, gradients, weights of each neuron [MILLIONS]

• Summary statistics of the model
 • loss/ accuracy of the model

• Dynamic time-series data [MILLIONS]
 • how activations/ gradients/ weights changes over time
 • how loss/ accuracy change over time
Why visualize – after iterative user studies

• Identify root cause of a failed training process
 • Loss function can become NaN or Inf
 • Multiple sources -> inappropriate network structure, bug in code, lack of numerical stability

• R1: Connecting the overall statistics with detailed training dynamics
 • Summary statistic serves as entry point
 • Detailed training dynamic can be used for root cause analysis
Why visualize – after iterative user studies

• R2: Examining how data flows through the network
 • Different layers has different roles in DGM
 • A failed training process is usually caused by a specific layer

• R3: Facilitating the detection of outliers
 • Outliers in training process is a potential reason for failed training process

• R4: Examining how neurons interact with each other
 • Poor understanding on how neurons interact with each other in a DGM
 • Even after identification of abnormal neuron, it is hard to identify the root cause.
How to visualize

• Data flow visualization module
 • How data flows in a DGM (R2)
 • How other neurons influence the output of the neuron of interest (R4)
 • Credit assignment problem

• Training dynamics analysis module
 • Loss as a function of time (R1)
 • Samples time series to preserve outliers (R3)
 • Blue-noise polyline sampling to reduce visual clutter
Overview
Snapshot level analysis

• Idea - which layer caused the issue?

• **DAG** - illustrates how layers are connected
 • Hierarchical structure to reduce clutter in case of 100s of layers
Snapshot level analysis

- **Line charts** – how data flows
 - Averaged training dynamics within a certain configurable window
 - Center line represents the focus snapshot

![Diagram of line charts](image)
Neuron level analysis

• Idea - Root cause analysis

• Credit assignment
 • Influenced by both previous and next layer
 • Use forward and backward propagation to find neurons of interest
Stitching it all together
Stitching – Examine the loss function
Stitching – Examine the layers (snapshot)
Stitching – Training dynamics of the layer
Stitching – Training dynamics of the layer
Stitching – Neuron level root cause analysis
Analysis - scalability

• Millions of neurons in each layer and 100s of layers
 • In snapshot level view, use expandable hierarchy groups
 • In layer level view, use filtering, clustering
 • In neuron level view, use filtering and clustering

• Large amount of training dynamics data [5TBs]
 • Keep a few in memory

• Millions of snapshot-level data come as time-series
 • Use sampling (blue-noise polyline)
Analysis - critique

• Pros
 • Case studies to prove that it works
 • User study to understand the requirements
 • Extendible to CNNs and MLPs

• Cons
 • Does not work in case neural networks have cycles
 • Works only for offline analysis

• My views
 • Not sure of responsiveness
 • Not sure what is the level of change required for other NNs
Conclusion/ Highlights

• Effective tool to diagnose DGMs

• Three level of analysis in DGMs
 • Snapshot level
 • Layer level
 • Neuron level

• Idioms
 • focus+context, filtering, aggregation, interaction
 • blue-noise polyline sampling to reduce clutter
DGMs – VAE (variational auto encoders)
What to visualize - challenges

• Handle large amount of time series data from the training process
 • Activation/gradient/weight changes over time (training dynamics)
 • Millions of time series (as DGMs has millions of above)
 • Simple viewing => visual clutter
Overview

• Examine loss changes to identify abnormal snapshot
• High level averaged statistics of each layer to identify layer of interest (hybrid viz) at the snapshot level
• Print the training dynamics of the layer of interest (layer level analysis)
• Interactively select a set of neurons and explore how other neurons are related though the data-flow visualization
Neuron level analysis

• Idea - Root cause analysis

• Credit assignment
 • Influenced by both previous and next layer
 • Use forward and backward propagation to find neurons of interest

• Other ideas for conv/ deconv layers
 • Relative position of the image patch that each neuron is influenced
 • Represent neurons as feature maps - neurons which share the same weights
 • By tracing behind, we identify the corresponding image patch.
Neuron Level analysis

• Visualization
 • Cluster neurons and show them in a grid form
 • Show only which highly contribute to the output