Voila: Visual Anomaly Detection and Monitoring with Streaming Spatiotemporal Data

Nan Cao, Chaoguang Lin, Quihan Zhu, Yu-Ru Lin, Xian Teng, Xidao Wen. IEEE Transactions on Visualization and Computer Graphics (Volume: PP, Issue: 99)

http://ieeexplore.ieee.org.ezproxy.library.ubc.ca/stamp/stamp.jsp?arnumber=8022952&tag=1

Presented by: Shirlett Hall November 28, 2017

Why: Domain Tasks

- 1. Use anomaly detection algorithm against the multi-faceted data
- 2. Create rich-context visualizations that show suspicious patterns from the tensor analysis Overview -> ranking -> link to raw data
- · Showing patterns -> comparing patterns -> external memorization
- 3. Apply or update Bayesian rules as users re-order anomalous patterns by degree of importance

How: Heatmap in Context Mode

Implementation of the map visualization system

High Level Goals:

• To process large scale, dynamic streaming data to detect anomalies • To allow human inspection and interpretation to guide final machine processes

High Level Features:

- Online Data Processing Pipeline that remains connected to data inputs · Uses a tensor-based algorithm to produce descriptive patterns over time and snace
- · Incorporates unsupervised Machine Learning Techniques during human interactions
- · Shifts between map modes dependent on user goals

What: Data

How: Facets

Scale:

· GIS Data in big data scenarios

A 110 H

Anna Line

1. 110 M 6

> \$. De 0 M Are -----

Fig. 5. The user interface of Voila :

attribute

· Transformed into a sequence of tensor time series at the granular level of an hour, a day, a week, or month

Why: Abstract Tasks

- In a specific point in time, identify spatial locations and objects
- Direct user's attention to potentially significant anomaly instances
- Compare behaviors at the same or different time intervals using user judgement

How: Heatmap in Anomaly Detection Mode

the background color) and the difficulty of finding an anomaly (the size of the inner rectangle).

Why: Domain Tasks, cont'd

data into a tensor time series, (2) the expected pattern analysis based on historical data, (3) context analysis based on tensor decomposition, and (4) online regional anomaly detection in context.

Voila - Short Video showing Application

Voila : Visual Anomaly Detection and Monitoring with Streaming Spatiotemporal Data

Submission ID: # 230

Streaming dynamic CIS with spatial legation and abjects
streaming, dynamic dis with spatial location and objects
Tensor with features, space and time as quantitative attributes
Apply anomaly detection, show suspicious patterns, compare historica patterns, allow analysis, process user feedback, update machine learn algorithm
Dense spatial area using rectangular layered glyphs; colormaps with diverging hues and sequential saturation levels; and popouts/tooltips fields
Multiform linked layouts including 2 views with a main map and a less detailed map to show context; time series showing area history; tabul chart showing anomalies; panel showing ranking of multiple regions
Filtering
Selection and highlighting nan zoom brush

Evaluation and Next Steps: Authors' Perspective

- The tensor detection method produced more satisfactory positive identification rates than other baseline methods
- · With the aid of the system's visual tools, users are well prepared to fixate on only suspicious events
- · Since the initial visualization seems overwhelming at first glance, need tutorials
- More visual clues

Color Scher

Z-Score: iomaly: Volume:

6

ts of eight major views: 1) macro and 2) micro map views: 3)

- Support for Fact Checking
- · Adaptively determine granularity with respect to time · Embed forecasting and prediction capability

Additional Critique

- · Good that they have included a human in loop
- Channels are noticeable and fairly effective for the intended purpose with some exceptions, ex. rainbow like color map for z-scores
- The purpose of each juxtaposed view is not clear to a novice user
- The authors should have more than one domain expert provide feedback
- · When a particular anomaly is noted as being normal, then this may increase the likelihood that false negatives occur in the future
- · Size of the g inside the glyph, should be a number
- No mention of the system requirements to process and store so much data and the speed of the algorithm