

WHAT IS A TRADITIONAL SCATTERPLOT?

- Encodes two quantitative variables using the vertical and horizontal spatial position channels
- Each object in a dataset is represented with a point (mark)
- Effective in providing overviews, finding outliers, and judging correlation

DOES IT FAIL?

- Yes! As data grows in scale, traditional scatterplots can become ineffective
- Overdraw is a concern where points overlap one another and masks points drawn under them.

DIFFERENT DESIGNS SOLUTIONS

Designers have little guidance in how to select among choices. Which design to choose?

GOAL OF THE PAPER

- Help designers select scatterplot designs that are appropriate to their scenarios
- Identify factors that affect the appropriateness of scatterplot designs
- Create a framework based on the analysis goal and data characteristics

FACTORS THAT AFFECT THE DESIGN OF SCATTERPLOTS

- Analysis Tasks: What do viewers do with a scatterplot?
- Data Characteristics: How do they prompt changes in design?
- Design Decisions: What design variables need to be constructed?

ANALYSIS TASKS

- Gathered 23 model tasks from various vis literature to capture what viewers do with scatterplots
- Four data visualization experts performed an open card sort where tasks were grouped together based on their similarity
- Refined the categories post hoc to generate a complete picture of the task space

Fig. 2 Example trials from our experiment. Target levels are 5 (blue) in the left example and 1 (red) in the right example. Correct answers are highlighted with black outlines.

Task: Which section of the graph has the most dots of [this] color?

M. Tory, et al. Spatialization design: Comparing points and landscapes. IEEE Transactions on Visualization and Computer Graphics, 13(6): 1262–1269, 2007.

ANALYSIS TASKS

• A final list of 12 tasks split into 3 categories

Object Centric

Browsing

Aggregate Level

• A combination of these tasks can be used as building blocks to achieve an analysis goal

	# Task	Description
object-centric	1 Identify object	Identify the referent from the representation
	2 Locate object	Find a particular object in its new spatialization
	3 Verify object	Reconcile attribute of an object with its spatialization (or other encoding)
	4 Object comparison	Do objects have similar attributes? Are these objects similar in some way?
browsing	5 Explore neighborhood	Explore the properties of objects in a neighborhood
	6 Search for known motif	Find a particular known pattern (cluster, correlation)
	7 Explore data	Look for things that look unusual, global trends
level	8 Characterize distribution	Do objects cluster? Part of a manifold? Range of values?
	9 Identify anomalies	Find objects that do not match the 'modal' distribution
gate	10 Identify correlation	Determine level of correlation
aggre	11 Numerosity comparison	Compare the numerosity/density in different regions of the graph
	12 Understand distances	Understanding a given spatialization (e.g., relative distances)

DATA CHARACTE RISTICS

Data characteristics can influence the design of an appropriate scatterplot

DATA CHARACTE RISTICS

List of design affecting data characteristics collected from the literature

Data Attribute Possible Values Relevant Work Class label No class label, 2-4 Elliott and Rensink [2015], Gramazio et al. classes, 5+ classes [2014], Sips et al. [2009] Num. of points Small (<10), medium Cottam et al. [2013], Gleicher et al. [2013], (10–100), large Keim et al. [2010], Mayorga and Gleicher (100-1000), very large [2013], Tory et al. [2007] (>1000)Num. of dimensions Two continuous, two Best et al. [2006], Chan et al. [2010], derived, or >2Sedlmair et al. [2013] dimensions Spatial nature Dimensions do/do MacEachren [1995], Montello et al. [2003] not map to spatial position Data distribution Random, linear Bertini et al. [2011], Li et al. [2008], Rensink and Baldridge [2010], Sedlmair correlation, overlap, manifolds, clusters et al. [2013], Sips et al. [2009], Tatu et al. [2010], Dang and Wilkinson [2014], Wilkinson et al. [2005]

5+ classes

DESIGN DECISION

• Identified design decisions by applying a keyword ("scatter") search methodology on 3040 vis papers.

symbol

1

 \bigcirc

 $:: \rightarrow : * / : \bullet / : \bullet$

size

 (\mathbf{k})

color

This item is an outlier!

pixel

• Clustered the design choices into 4 groups

Point Encoding (Example: Color)

Point Grouping (Example: Binning)

Point Position (Example: Animation)

Graph Amenities (Example: Annotations)

Interaction Intent

Cluster	Design Choice	Example
Point Encoding	Color	000/000
	Size	000
	Symbols	$\bigcirc \triangle \diamondsuit$
	Outline	
	Opacity	$\bigcirc \bigcirc \bigcirc \bigcirc$
	Texture	$\otimes \oslash \otimes$
	Depth of Field	·····································
	Blurriness	$\bigcirc \bigcirc \bigcirc \bigcirc$
Point Grouping	Representation Type	$\langle i \rangle \rightarrow \langle i \rangle / \langle i \rangle = \langle i \rangle $
	Positional Binning	$\swarrow \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	Polygon Enclosure	
	Shape Abstraction	≪ → 🧧
Point Position	Subsampling	<i>∉ → ∉</i>
	Displacement	<i>≪ → ≪</i>
	Animation	🧭 🕩 🎺 🕩 🔅
	Projection	$\langle \phi \rangle \rightarrow \langle \phi \rangle$
	Zooming	<u> →</u>
Graph Amenities	Grid Lines	∟→ ﷺ
	Axis Ticks	⊥ → <u>‡</u>
	Legend	 Series 1 Series 2
	Trend Lines	··· → ·// / // inear nonlinear
	Annotations	This item is an outlier!

DESIGN SPACE TO EVALUATE APPROPRIATENESS <u>OF DESIGN STRATEGIES</u>

Data Attribute

Num. of points

Spatial nature

Data distribution

Num. of dimensions

Class label

FGIES	Point Encoding	Color	000/000	
		Size	°00	
		Symbols	⊙△়	
		Outline		
nese three is huge!		Opacity	000	
) discrete scatterplot scenarios		Texture	S @ S	
		Depth of Field	₩ ₩ ₩	
		Blurriness	$\bigcirc \bigcirc \bigcirc$	
Possible Values	Point Grouping	Representation Type	$\swarrow \rightarrow \bigotimes_{i \in plick} / \bigotimes_{equilit}$	
No class label, 2-4		Positional Binning	≪→ ↓ ≵/ ↓ :/:::/Ⅲ	
classes, 5+ classes		Polygon Enclosure	·: → ♥ ● eveny	
Small (<10), medium		Shape Abstraction	≪→ 📮	
(10–100), large (100–1000), very large	Point Position	Subsampling		
(>1000)		Displacement	<i>≪ → ∜</i>	
Two continuous, two		Animation	ぐॎ⊙ぐ⊙∻	
derived, or >2		Projection		
dimensions		Zooming	<u>≪_</u> → <u></u> ;	
Dimensions do/do not map to spatial	Graph Amenities	Grid Lines	∟→ Ш	
position		Axis Ticks	∟_→ ೆ	
Random, linear		Legend	Series 1 Series 2	
correlation, overlap,		Trend Lines	· → / / / / Inex ronineer	
mannolus, clusters		Annotations	This item is an outlier	

Cluster

Design Choice

Example

1 Identify object 2 Locate object object-centric 3 Verify object 4 Object comparison 5 Explore neighborhood browsing 6 Search for known motif 7 Explore data 8 Characterize distribution 9 Identify anomalies iggregate-level 10 Identify correlation 11 Numerosity comparison 12 Understand distances

Task

Cross product of these three is hug Leads to over 4300 discrete scatte

HTTPS://ALPER.DATAV.IS/ASSETS/PUBLICATIONS/SCATTERPLOTS/SCATTERPLOT-TALK.PDF	12
--	----

A SLICE OF THE SPACE: TASK & DESIGN STRATEGIES

- Framework illustrated with a 2D slice of the entire grid (60 out of 4300 grids)
- Entire set of tasks and design strategies
- Data characteristics fixed to "large" number of points and classes with an unstructured distribution of data

	А	В	С	D	Е
Task	Point encoding	Point position	Point grouping	Interaction intent	Graph amenities
1 Identify object	~	~	\$	~	✓*
2 Locate object	~	\$	\$	~	~
3 Verify object	~	✓*	\$	~	~
4 Compare objects	~	~	\$	~	~
5 Explore neighborhood	~	~	~	~	~
6 Search for motif	~	~	~	~	✓*
7 Explore data	~	~	~	~	~
8 Characterize distribution	~	~	~	\$	~
9 Find anomalies	\$	✓*	\$	✓*	~
10 Identify correlation	×	×	~	×	~
11 Characterize numerosity	×	×	~	×	x
12 Characterize distances	✓*	~	✓*	✓*	~

✓ general support

✓* support in particular situations

♦ requires concurrent support from other encodings

✗ no improvement to task support

USING THE FRAMEWORK

 Difficult to support aggregate level tasks such as identifying anomalies, correlations and object density with point encoding and position (9A-11B)

	А	В	С	D	Е
Task	Point encoding	Point position	Point grouping	Interaction intent	Graph amenities
1 Identify object	~	~	\$	~	✓*
2 Locate object	~	\$	\$	~	~
3 Verify object	~	✓*	\$	~	~
4 Compare objects	~	~	\$	~	~
5 Explore neighborhood	~	~	~	~	~
6 Search for motif	~	~	~	~	✓*
7 Explore data	~	~	~	~	~
8 Characterize distribution	~	~	~	\$	~
9 Find anomalies	\$	✓*	\$	✓*	~
10 Identify correlation	×	×	~	×	~
11 Characterize numerosity	×	×	~	×	×
12 Characterize distances	* *	~	✓*	✓*	~

✓ general support

✓* support in particular situations

♦ requires concurrent support from other encodings

✗ no improvement to task support

USING THE FRAMEWORK

- Point grouping hurts object-centric tasks (1C-4C, 9C, 12C)
- However, by compositing point encoding, point position and interaction intent, object centric tasks can be supported.

	А	В	С	D	Е
Task	Point encoding	Point position	Point grouping	Interaction intent	Graph amenities
1 Identify object	~	~	\$	~	✓*
2 Locate object	~	\$	\$	~	~
3 Verify object	~	✓*	\$	~	~
4 Compare objects	~	~	\$	~	~
5 Explore neighborhood	~	~	~	~	~
6 Search for motif	~	~	•	~	✓*
7 Explore data	~	~	•	~	~
8 Characterize distribution	~	~	~	\$	~
9 Find anomalies	\$	✓*	\$	✓*	~
10 Identify correlation	×	x	~	×	~
11 Characterize numerosity	×	x	~	×	×
12 Characterize distances	✓*	~	✓*	✓*	~

✓ general support

✓* support in particular situations

♦ requires concurrent support from other encodings

✗ no improvement to task support

WHAT-WHY-HOW ANALYSIS

Idiom	Scatterplots (Framework)
What: Data	Vis literature; papers
What: Derived	Table with Tasks, Data characteristics, Design choices
Why: Tasks	Compare design strategies
How: Encode	Multidimensional table, Color highlighting, marks to denote appropriateness of design decisions
How: Reduce	Dimensionality Reduction/Slicing
Scale	4300 scatterplot scenarios

STRENGTH AND LIMITATIONS

• <u>Strengths</u>

- -First to identify scenarios specific to scatterplot design
- -Provides scope to discover potential areas for future innovation in scatterplot design
- Provides a good reference point for designers to get started with scatterplot design

• Limitation

- -Infeasible to present the high dimensional grid. Data characteristics were restricted
- -Focuses on single scatterplot design. Multi scatterplot tasks were discarded
- -Misses the evaluation component is the study. How useful did designers find this framework to be?

REFERENCES

Paper: <u>https://alper.datav.is/assets/publications/scatterplots/scatterplots-preprint.pdf</u>

Slides: https://alper.datav.is/assets/publications/scatterplots/scatterplot-talk.pdf

Project Page: <u>http://graphics.cs.wisc.edu/Vis/scattertasks/</u>