Ch 11/12: Manipulate, Facet Paper: Paramorama Tamara Munzner Department of Computer Science University of British Columbia CPSC 547, Information Visualization Week 7: 24 Oct 2017	<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>	,	Presentation topi - post your choice t - ok to have more t - timing: let me know - from this set: Now - I'll assign days soo - I'll assign papers (f - more on presentat
• data types • domains • techniques - networks - machine learning - parallel coordinates - trees - genomics - dimensionality reduction - geographic data - medicine - clustering - high-dimensional data - sports - matrix views - text data - digital humanities - multiple view - space & time - sense making • topics - trajectories - color - design - multi-attribute tables - perception - spatial fields - uncertainty - analysis process - analysis process	Groups • finalize by this Fri Oct 27 at latest – post to project matchup thread on discussion board to confirm your group – please post with current status report, even before that! • who's still looking, who's resolved	Meetings • each group needs signoff: at least one meeting – in some cases followup meeting needed; in some cases you're already set • meetings cutoff is 5pm Thu Nov 2 • major blocks of available time – Tue 10/24 5-6 – Wed 10/25 4-6:30 – Thu 10/26 3:30-6:30 – Fri 10/27 5-6 – Mon 10/30 flexible all day – Tue 10/31 5-7 – Wed 11/1 5:30-6:30 – The 11/2 3:30-5	 Projects overall s Pitches: Tue Oct I Groups finalized: Meetings cutoff: T Proposals due: Ma – (no readings due T Peer Project Revi Peer Project Revi Final presentation Final papers due:
 Proposals projects: written proposals due Mon Nov 5 10pm (no readings due Tue Nov 6) heading project title (real title, not just "CPSC 547 proposal" - can change later) name & email of every person on team (do not include student numbers) intro: brief description of what you're proposing to do, at high level include personal expertise in this area (for each group member) for design studies: domain, data, task definitely in domain terms get started on abstraction (even if preliminary) do discuss scale of data: # items, # levels in each categorical attrib, range of ordered attribs 	 Proposals II proposed infovis solution (what you know so far) do include illustration of what interface might look like, could be hand drawn sketch or mockup made with drawing program do include scenario of use (how user would use solution to address task) implementation plan (high-level: platform, language, libraries) clarify your scope/goal: building on work of others to enable more ambitious project, vs rolling your own to learn tool. amount of work depends on your existing expertise milestones break into meaningful smaller pieces. specific to your project, in addition to generic for each, estimate target date of completion and hours of work be explicit about who will do what: work breakdown between group members time scope: 70 hrs per person across whole project very typical to structure as possibilities: after A&B, decide on C and do 2 of D-G 	Proposals III • http://www.cs.ubc.ca/~tmm/courses/547-17F/projectdesc.html#proposals • also, consult final report structure to have future goal in mind http://www.cs.ubc.ca/~tmm/courses/547-17F/projectdesc.html#final	
 Paramorama: Visualization of Parameter Space for Image Analysis requirements RI separate out specification of input params and inspection of output from slow computations (actual image processing) R2 enable param optimization. three classes of params, focus on hard ones: aliases: input once, never change, minimal effort nominal params: pick from list, never change, minimal effort continuous params: essential to find right thresholds; difficult & time consuming only 3-7 out of the 5-20 total params need to be carefully sampled R3 analyze outcomes for reference image wrt input params: find good vs bad strategy offline batch processing to compute, then interactive exploration of output user selects module, subset of continuous params, range, and target # samples [Visualization of Parameter Space for Image Analysis. Pretorius, Ruddle, Bray, Carpenter.TVCG 12(17):2402-2411 2011 (Proc. InfoVis 2011).] 	Data• data: samples & output - CellProfiler full pipeline has 150-200 params - 10-20 modules w/ 5-20 params each• derived data: table - rows are unique combos of sampled param values - columns are user-selected params• derived data: hierarchical clustering - root contains all tuples - each level represents user-selected parameter - path from the root to each leaf represents unique combination of sampled parameter - reorder parameters to change leaf order • instead of reorder columns in table	 Overview cluster hierarchy of sampled params primary navigation control user selects areas, linked highlighting in refinement view visual encoding spatial position: rectilinear node-link view considerations: compactness, linear ordering, skinny aspect ratio rejected: icicle plots & tree maps vs node-link rejected: radial vs rectilinear vis enc: color perceptually ordered, colourblind-safe luminance high, saturation low 	Refinement view • outputs in adjacent but visually distinct areas • preserve top-to-bottom order from overview • dynamically control parameter level to lay out side by side • so contiguous regions in cluster hierarchy map to refinement view • vertical blue line • cut through tree • ex: 11 blue subtrees highlighted in overview, 11 regions shown on right. [Fig 4.Visualization of Parameter (Proc. InfoVis 2011).]

ntations & Projects	 Presentation topic choices presentation topic choices due this Friday (Oct 27) at noon post your choice to discussion thread on Canvas: I or 2 topic choices ok to have more than one person with same choice timing: let me know if a specific day is bad for you ("veto day") from this set: Nov 7, 14, 21, 28, Dec 5 I'll assign days soon I'll assign papers (from this year's VIS conf) at least 1 week before your presentation more on presentation expectations next time (Oct 31) 	
at least one meeting eting needed; in some cases you're already set nu Nov 2 time	 Projects overall schedule Pitches: Tue Oct 17 in class Groups finalized: Fri Oct 27 5pm Meetings cutoff: Thu Nov 2 at 5pm Proposals due: Mon Nov 5 at 10pm (no readings due Tue Nov 6) Peer Project Reviews 1: Tue Nov 20 in class Peer Project Reviews 2: Tue Dec 5 in class Final presentations: Tue Dec 12 1-5pm Final papers due: Fri Dec 15 at 11:59pm 	
m/courses/547-17F/projectdesc.html#proposals structure to have future goal in mind m/courses/547-17F/projectdesc.html#final	paper: Paramorama	
led params ol shlighting in refinement view sition: rectilinear node-link view s, linear ordering, skinny aspect ratio maps vs node-link - rblind-safe ow age Analysis. Pretorius, Ruddle, Bray, Carpenter. TVCG 12(17):2402-2411 2011	<section-header> Befinement view: Custom layout outputs in adjacent but issually distinct areas preserve top-to-bottom order from overview dynamically control parameter level to lay outs iscluster hierarchy map to refinement view vertical blue line out through tree ex: 11 blue subtrees highlighted in overview, 11 regions shown on right. </section-header>	

