Today
• timing
- presentation topics
- projects
- meetings timing
- proposal presentation walkthrough
- team (or potential team) sync-ups
- today’s reading discussion, Q&A
- break
- Matt Brehmer guest lecture 3:30
- Timelines Revised
- ClearAccount
- tools discussion

Presentation topics: Pick one or two
• data types
- networks
- trees
- geographic data
- high-dimensional data
- text data
- space & time (spatiotemporal data)
- trajectories
- sequences & events
- multi-attribute tables
- visual fields
- techniques
- machine learning
- genomics
- medicine
- sports
- digital humanities
- literature making
- topics
- color
- design
- perception
- attention
- analysis process
- parallel coordinates
- dimensionality reduction
- clusterning
- matrix views
- multiple view coordination

Groups
• finalize by this Fri Oct 27 at latest
- proposal project walkthrough on discussion board to confirm your group
- please post with current status report, even before that!
• what’s still looking, what’s resolved

Proposals
• projects: written proposals due Mon Nov 5 10pm
 - (no readings due Tue Nov 6)
- heading
 - project title (real title, not just “CPSC 547 proposal” – can change later)
- name & email of every person on team (do not include student numbers)
- intro: brief description of what you’re proposing to do, at high level
 - include personal expertise in this area (for each group member)
- for design studies: domain, data, task
 - deﬁnitely in domain terms
 - get started on abstraction (even if preliminary)
 - do discuss scale of data & time, if levels in each categorical strata; range of ordered strata
 - for technique projects: explain proposed context of use

Proposals II
• proposed infovis solution (what you know so far)
 - do include illustration of what interface might look like, could be hand drawn sketch
 - visual encoding: spatial position: rectilinear node-link view
 - major blocks of available time
 - implementation plan (high-level: platform, language, libraries)
 - clarify your scope/goal: building on work of others to enable more ambitious project, vs rolling your own to learn tools
 - milestones
 - break into meaningful smaller pieces, specific to your project, in addition to generic
 - due estimates target dates of completion and hours of work
 - be explicit about who will do what: work breakdown between group members
 - milestone scope: 7 hrs per person across whole project
 - very typical to structure as possibilities: after A&B, decide on C and do 2 of D-G

Proposals III
• http://www.cs.ubc.ca/~tmm/courses/547-17F/projectdesc.html#proposals
 - also, consult final report structure to have future goal in mind
• http://www.cs.ubc.ca/~tmm/courses/547-17F/projectdesc.html#final

Presentations & Projects
• presentation topic choices due this Friday (Oct 27) at noon
 - project choice discussion on Canvas: 1 or 2 topic choices
 - all teams must have one person with same choice
 - timing let me know if a specific day is bad for you (“veto day”)
- from this set Nov 7, 14, 21, Dec 5
- I’ll assign days soon
- I’ll sign papers (from this year’s VIS conf) at least 1 week before your presentation
 - more on presentation expectations next time (Oct 31)

Projects overall schedule
• Pitches: Tue Oct 17 in class
• Groups finalized: Fri Oct 27 5pm
• Meetings cutoff Thu Nov 2 at 5pm
• Proposals due: Mon Nov 5 at 10pm
 - (no readings due Tue Nov 6)
• Peer Review Projects I: Tue Nov 20 in class
• Peer Review Projects II: Tue Dec 5 in class
• Final presentations: Tue Dec 12 1-5pm
• Final papers due: Fri Dec 15 at 11:59pm

Overview
• cluster hierarchy of sampled params
 - primary navigation control
 - user selects areas, linked highlighting in refinement view
 - visual encoding spatial position: rectilinear node-link view
 - considerations: compactness, linear ordering, skinny aspect ratio
 - rejected circle plots & tree maps vs node-link
 - rejected radial vs rectilinear
• vis enc color:
 - perceptually ordered, colorblind-safe
 - luminance high saturation low

Refinement view: Custom layout

ParaStreck: Visualization of Parameter Space for Image Analysis

Ch 11/12: Manipulate, Facet Paper: Paramorama
Interaction technology

- What do you design for?
 - mouse & keyboard on desktop
 - large screens, lower, multiple clicks
 - touch interaction on mobile
 - small screen, no hover, just tap
 - gestures from video / sensors
 - ergonomic reality vs movie bombast
 - eye tracking?

Selection

- Selection: basic operation for most interaction
- Design choices: typical visual channels
 - change item color
 - but hides existing color coding
 - add outline mark
 - change size (ex: increase outline mark linewidth)
 - change shape (ex: from solid to dashed line for link mark)
 - unusual channels motion
 - motion: usually avoid for single view
 - with multiple views, could justify to draw attention to other views

Highlighting

- Highlight: change visual encoding for selection targets
 - visual feedback closely tied to but separate from selection interaction
- Design choices: typical visual channels
 - change item color
 - but hides existing color coding
 - add outline mark
 - change size (ex: increase outline mark linewidth)
 - change shape (ex: from solid to dashed line for link mark)
 - unusual channels motion
 - motion: usually avoid for single view
 - with multiple views, could justify to draw attention to other views

Tooltips

- Tooltips: popup information for selection
 - hover or click
 - can provide useful additional detail on demand
 - beware: does not support overview!
 - always consider if there’s a way to visually encode directly to provide overview
 - “If you make a rollover or tooltip, assume nobody will see it. If it’s important, make it explicit.”
 - Ginger Ash, NYT

Scrollytelling

- Scrollytelling: how: navigate page by scrolling (panning down)
 - pros: familiar & intuitive, from standard web browsing
 - linear (only up & down) vs possible overload of click-based interface choices
 - cons:
 - full-screen mode may lack affordances
 - scrolling, no direct access
 - unexpected behaviour
 - continuous control for discrete steps
 - example: icicle plot
 - small zoom, only viewport changes, changes preserved

Animated transition + constrained navigation

- Animated transition: hierarchical bar chart
 - add detail during transition to new level of detail

Animated transition + constrained navigation

- Example: multilevel matrix views
 - movie: http://www.win.tue.nl/vsl1/home/lhff/lematris/Zoomin.avi
 - movie: http://www.win.tue.nl/vsl1/home/lhff/lematris/Zoomout.avi
 - movie: http://www.win.tue.nl/vsl1/home/lhff/lematris/Pan.avi

Semantic zooming

- Semantic zoom: for interaction to geometric zoom
 - resolution-aware layout adapts
 - can provide useful additional detail on demand

Navigating: Changing viewpoint/visibility

- Change viewpoint
 - changes which items are visible within view
 - camera metaphor
 - pan/translate/scroll
 - zoom in/out
 - change size (ex: increase outline mark linewidth)
 - change shape (ex: from solid to dashed line for link mark)

System: LiveRAC

- Semantic zoom: for interaction to geometric zoom
 - resolution-aware layout adapts
 - can provide useful additional detail on demand

Motion

- motion: usually avoid for single view
 - with multiple views, could justify to draw attention to other views

Idiom: Scrollytelling

- How: navigate page by scrolling (panning down)

Idiom: Animated transition - bar detail

- Example: hierarchical bar chart
 - add detail during transition to new level of detail

Idiom: Animated transition - tree detail

- Example: multilevel matrix views
 - movie: http://www.win.tue.nl/vsl1/home/lhff/lematris/Zoomin.avi
 - movie: http://www.win.tue.nl/vsl1/home/lhff/lematris/Zoomout.avi
 - movie: http://www.win.tue.nl/vsl1/home/lhff/lematris/Pan.avi

Idiom: scrolled navigation

- Scrolled navigation
 - example: icicle plot
 - small zoom, only viewport changes, changes preserved

Idiom: Semantic zooming

- Semantic zoom: for interaction to geometric zoom
 - resolution-aware layout adapts
 - can provide useful additional detail on demand

Idiom: Animated transition + constrained navigation

- Example: multilevel matrix views
 - movie: http://www.win.tue.nl/vsl1/home/lhff/lematris/Zoomin.avi
 - movie: http://www.win.tue.nl/vsl1/home/lhff/lematris/Zoomout.avi
 - movie: http://www.win.tue.nl/vsl1/home/lhff/lematris/Pan.avi

Idiom: Semantic zooming

- Semantic zoom: for interaction to geometric zoom
 - resolution-aware layout adapts
 - can provide useful additional detail on demand
Idiom: Small multiples
- encoding: same
- data: none shared
- different: attributes for node colors
- (same network layout)
- navigation: shared

System: Cerebral

Coordinate views: Design choice interaction
- why juxtapose views?
 - benefits: eyes vs memory
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
- create display area, 2 views side by side each have only half the area of one view

Partitioning: Recursive subdivision
- different encoding for second-level regions
 - choropleth maps

Input View
- how to divide data between views
 - split into regions by attributes
 - encodes association between items using spatial proximity
 - order of splits has major implications for what patterns are visible
- no strict dividing line
 - layers: grouped bars
 - continuous region in which visually encoded data is shown on the display
 - glyphs: small icons
 - abut: with internal structure that arises from multiple marks

System: HIVE
- single bar chart with grouped bars
 - split by state into regions
 - compare glyph within each region showing all
- compare easy within state, hard across ages
- compare easy within age, harder across states

System: HIVE
- multiple bar charts
 - split by age into regions
 - one chart per region
 - compare easy within age, harder across states

Superimpose layers
- layer: set of objects spread out over region
 - each set is visually distinguishable group
 - overall: whole view
 - design choices
 - how many layers, how to distinguish?
 - encode with different, nonoverlapping channels
 - two layers achievable, three with careful design
 - small static set, or dynamic from many possible?

System: HIVE
- background layer: roads
 - hue, size distinguishing man from minor
 - high luminance contrast from background
 - background layer: regions
 - desaturated colors for water, parks, land areas
 - user can selectively focus attention
 - "get it right in black and white"
 - check luminance contrast with grayscale

Dynamic visual layering
- interactive based on selection
- one-hop neighbour highlighting demos: click vs hover (lightweight)

Idiom: Trellis plots
- superimpose within same frame
 - color code by year
 - partitioning
 - split by type, rows are wheat varieties
 - main-effects ordering
 - derive value of median for group, use to order
 - order rows within view by variety median
 - order views themselves by site median

System: Improve
- investigate power of multiple views
 - push focus to view count, interaction
 - how many is old
 - open research
 - reconstructable lists
 - easy backup
 - useful when linked to other renderings

Superimposing limits
- few layers, but many lines
 - up to a few dozen
 - but not hundreds
- superimpose vs juxtapose: empirical study
 - superimposed for local, multiple for global
 - roads:
 - local maximum global slope, decimation
 - same screen space for all multiples vs single superimposed

Dynamic visual layering
- interactive based on selection
- one-hop neighbour highlighting demos: click vs hover (lightweight)