Towards a Systemic Combination of Dimension Reduction and Clustering in Visual Analytics

John Wenskovitch, Ian Crandell, Naren Ramakrishnan,
Leanna House, Scoland Leman, Chris North Presented by
Kaiyuan Li

Overall contributions

- an overview of combining dimension reduction and clustering techniques into a visualization system (algorithm, task, visualization and interaction)
- A discussion of design decisions that must be addressed when creating a visualization system that combines two algorithm

Overview of two algorithm----dimension reduction

To represent high-dimensional data in low-dimensional data in the meantime the properties and
structure (outliers and clusters) of high-dimensional data can be preserved.
Advantage: scalability Disadvantage: information loss

Linear and Nonlinear

Common used Dimension reduction algorithms

Most PCA

Linear

Both

Wiegheded MDS (WMDS) [18]

Coordinating two algorithms
Tasks for Dimension reduction

Overview of two algorithm----clustering
Distance function Distance function ---input of $^{\text {on }}$ $d_{p}\left(x_{x}, x_{j}\right)=\left(\sum_{k} x_{x_{k}}-x_{j}| |^{p}\right)^{1 / p} . \begin{aligned} & \text { dimension reduction algorithm } \\ & \text { Measure the similarity for a pair of }\end{aligned}$ observations,
P-norms for more detailed: $\mathrm{https}: / / \mathrm{www}$.youtube.com/watch?
$\mathrm{v}=\mathrm{EECin0Uirw}$ $\mathrm{v}=$ EEcin0Uirw
$\mathrm{P}=1$ Manhattan distance, $\mathrm{p}=2$ Euclidean distance.

Large dataset present preference difficulties, ASK-Graph view supports large dataset. (200000
nodes and 16000000 nodes and 16000000 edges)
and Clustering

Common goal: interaction and exploration in dataset
Exploratory data analysis tasks------gain insights
Apply the weights to the dimension

Before selecting algorithms : what parameters should be learn and used

Distance function as the input is not all the same for algorithms, even if with same sets of weight.

It is impossibly to coordinate all pairs of dimension reduction algorithms and clustering algorithms

Six combinations of Dimension Reduction and Clustering: pipeline examples
为

1>Independent Algorithm
execute indecently both algorithm without any influences

2>Dimension reduction preprocessing for ${ }_{\text {Clustering }}$ processing DEA first and some information of output
pass to Clustering algorithm
$3>$ Clustering preprocessing for dimension reduction
reverse process of previous pipeline
$4>$ One algorithm implicitly includes the other
:execute one of the algorithms, convert the output
as the outputs of the other algorithm as the outputs of the other algorithm
$5>$ Global and local Algorithm
Combination
DRA take a global view and clustering algorithms take a local view, communicate with each other and converge to optimal layout
$6>$ Iterative, alternative algorithm :work together in same overarching algorithm (K-means)

Visual representation properties ----depending on algorithms (six pipelines)

1. Represent cluster using convex hull, clearly show the
different cluster
2. May not produce
dimension produce optimal clustering on high-
. Visibly separated clusters, the dimension reduction
may not be optimal
applied
3. Middle choice, overall layout effective, however no
accurate as applying independent algorithms
accurate as applying independent algorithms
Both algorithms work simultaneously, near-optimal
structure, however runtime are sacrificed

Interaction techniques

- PI (parametric Interaction)
- OLI (Observation-level Interaction)
- Surface-level
\qquad Ronatidepopetion
 Surfac X owitins ixilece cher

 differen duser

