Information Visualization

Intro, Time Series Exercise

Tamara Munzner

Department of Computer Science University of British Columbia

12 September 2017

http://www.cs.ubc.ca/~tmm/courses/547-17F

Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- human in the loop needs the details
 - -doesn't know exactly what questions to ask in advance
 - -longterm exploratory analysis
 - speed up through human-in-the-loop visual data analysis
 - -presentation of known results
 - -stepping stone towards automation: refining, trustbuilding
- intended task, measurable definitions of effectiveness

Finding me

- email is the best way to reach me: tmm@cs.ubc.ca
- office hours Tue right after class (5-6pm)
 - -or by appointment
 - -unlikely to catch me by dropping by, usually either in meeting or elsewhere
- X661 (X-Wing of ICICS/CS bldg)
- course page is font of all information -don't forget to refresh, frequent updates -<u>http://www.cs.ubc.ca/~tmm/courses/547-17F</u>

Audience

- no prerequisites
 - -many areas helpful but not required
 - human-computer interaction (CPSC 544 this term)
 - computer graphics, cognitive psychology, machine learning, statistics, algorithms, graphic design, <application domain>...
- open to non-CS people

-if no programming background, can do analysis or survey project

• open to advanced undergrads

-talk to me

• open to informal auditors

-some or all days of readings/discussion/exercises, as you like

• you'll get out of it what you put into it...

Intros

- say your full name, program, year
- also sign up on paper sheet so I see who's here vs who's registered

Schedule, big picture

- once/week, 2-5pm Tuesdays, 12 sessions
- Sep 5, no class: no CS grad classes, orientation events only
- Sep 12, first class: today!
- Oct 3, no class: annual VIS conference
- Dec 5, last class: one week past usual time
- Dec 12, final presentations: afternoon, exact time TBD
- Dec 15, final reports due

Marking: Previous

- 50% Project
 - -2% Pitches
 - -10% Proposal
 - -4% Interim Writeups
 - -4% Project Peer Reviews
 - 12% Final Presentation
 - 18% Final Report
 - -50% Content
- 20% Presentations
 - -75% Content: Summary 50%, Analysis 25%, Critique 25%
 - -25% Delivery: Presentation Style 50%, Slide Quality 50%
- 30% Participation
 - -60% Written Questions
 - -40% In-Class Discussion/Exercises

• marking by buckets

- great 100%
- good **89**%
- ok 78%
- poor 67%
- zero 0%

Marking: New

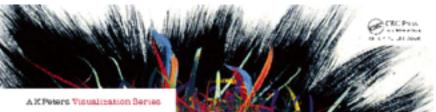
- 50% Project
 - 15% Intermediate Milestones (pass/fail)
 - extensive feedback along the way
 - -but formative not summative
 - -goal: help you make projects the best they can be!
 - 15% Final Presentation
 - -20% Final Report
 - 50% Content
- 20% Presentations (maybe??)
 - –75% Content: Summary 50%, Analysis 25%, Critique 25%
 - -25% Delivery: Presentation Style 50%, Slide Quality 50%
- 30% Participation
 - -60% Written Comments
 - -25% In-Class Work/Exercises (pass/fail)
 - 15% Discussion

• marking by buckets

- great 100%
- good 89%
- ok 78%
- poor 67%
- zero 0%

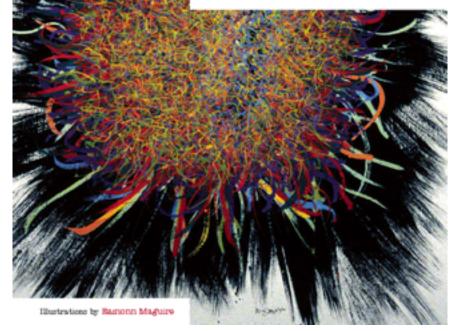
Class sessions

- first part: read & participate [30%]
 - -before class:
 - you do readings (~4, mix of chapters & papers)
 - you submit comments before class
 - you respond to at least two comments from classmates
 - -during class:
 - sometimes I lecture (briefly) and we discuss
 - frequent in-class work/exercises/critique
- maybe: presentations [20%]
 - -before one of the classes: you read paper I assign on topic of your choice
 - -during that class: you present it to everybody else (~10-15 min)
 - -TBD depending on final enrollment


ic of your choice 15 min)

Readings

textbook


-Tamara Munzner.Visualization Analysis and Design.AK Peters Visualization Series. CRC Press, 2014.

- <u>http://www.cs.ubc.ca/~tmm/vadbook/</u>
- -library has multiple free ebook copies
- -to buy yourself, cheapest is amazon.com
 - hardcover bundled with ebook
- papers
 - -links posted on course page
 - -if DL links, use library EZproxy from off campus
- readings posted by 6 days before class
- ~4 each session: mix of chapters & papers

Visualization Analysis & Design

Tamara Munzner

Comments submission & marking

- written comments on reading in advance, in two rounds
- round I due 9am (5 hrs before class), 90% of comment mark
 - I for each reading
 - -bring printout or laptop with you, springboard for discussion
 - -new: post to Canvas discussion group
- round 2 due 1:30pm (30 min before class), 10% of comment mark -written responses to at least 2 comments per session/week -you can only read comments from others after you post your own
- start as pass/fail marking, see how it goes
 - -switch to explicit marking if quality concerns

Comments content

- comments or questions
- fine to be less formal than written report -correct grammar and spelling still expected -be concise: one paragraph is good
- should be thoughtful, show you've read and reflected

-poor to ask something trivial to look up

- -ok to ask for clarification of genuinely confusing section
- -good to show that you're thinking carefully about what you read

-great to point out something that I haven't seen before

examples on <u>http://www.cs.ubc.ca/~tmm/courses/infovis/structure.html</u>

Class participation

- in-class group/individual exercises
- workshopping/critique for projects
- crucial part of course, attendance expected
 - -tell me in advance if you'll miss class (and why)
 - -tell me when you recover if you were ill
 - -(written comments credit still possible if submitted in advance)

Projects [50%]

• groups of 2, 3, or 4

-amount of work commensurate with group size

- stages
 - -milestones along the way, mix of written & in-class
 - new this year: formative feedback only
 - pitches (data/task), proposals, peer project reviews
 - -final versions
 - final presentations (oral): Tue Dec 12, afternoon
 whole dept invited, refreshments served
 - final reports (written): Fri Dec 15, 11:59pm
 - summative written feedback for both
- resources
 - -more on datasets and tools later

15

Projects

programming

-common case (I will only consider supervising students who do these)

-four types

- problem-driven design studies (target specific task/data)
- technique-driven (explore design choice space for encoding or interaction idiom)
- algorithm implementation (as described in previous paper)
- interactive explainer (like distill articles)
- analysis
 - -use existing tools on dataset
 - -detailed domain survey
 - -particularly suitable for non-CS students
- survey
 - -very detailed domain survey
 - -particularly suitable for non-CS students

Projects: Design studies

- BYOD (Bring Your Own Data)
 - -you (or your teammates) have your own data to analyze
 - thesis/research topic
 - personal interest
 - dovetail with another course (sometimes works, but timing may be tricky)
- FDOI (Find Data Of Interest)

-many existing datasets, see resource page to get started

- <u>http://www.cs.ubc.ca/group/infovis/resources.shtml</u>
- -can be tricky to determine reasonable task

Project examples

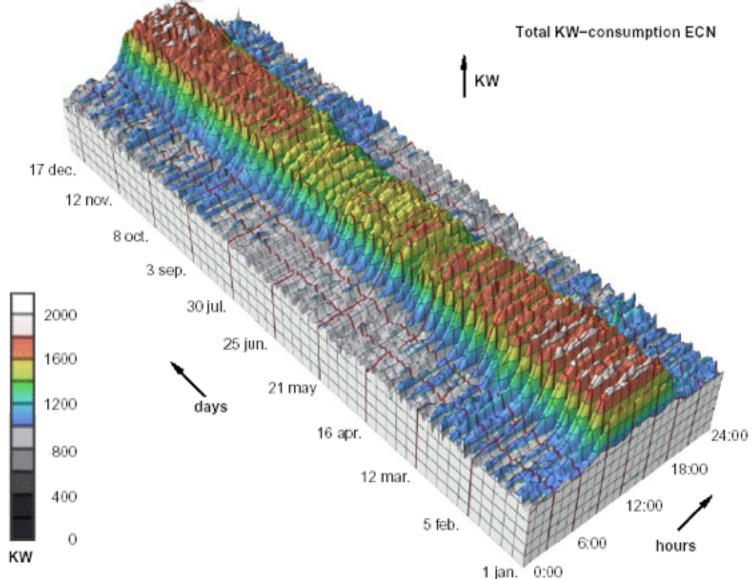
• <u>http://www.cs.ubc.ca/~tmm/courses/547-17F/projectdesc.html#examp</u>

Presentations [20%]

- maybe depends on final enrollment! TBD
- present, analyze, and critique one paper -send me topic choices, I will assign papers accordingly
- expectations
 - -slides required
 - -summary/description important, but also your own thoughts
 - analysis according to book framework
 - critique of strengths and weaknesses
- timing
 - -exact times TBD depending on enrollment
 - -likely around 10 minutes each
- topics at <u>http://www.cs.ubc.ca/~tmm/courses/infovis/presentations.html</u>

Now: In-class design exercise, in small groups

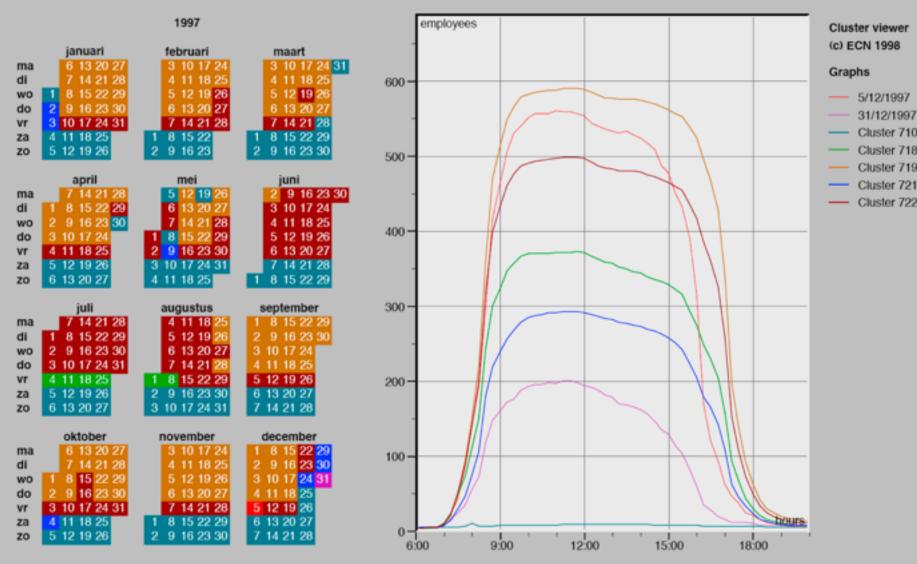
- Five time-series scenarios
 - -A: every 5 min, duration 1 year, 1 thing: building occupancy rates
 - -B: every 5 min, 1 year, 2 things: currency values (exchange rate)
 - -C: several years and several things: 5 years, 10 currencies
 - -D: I year, many things: CPU load across 1000 machines
 - -E: I year, several parameters, many things: 10 params on each of 1000 machines
- Small-group exercise: 15-20 min


-one group per table (4-5 people/group)

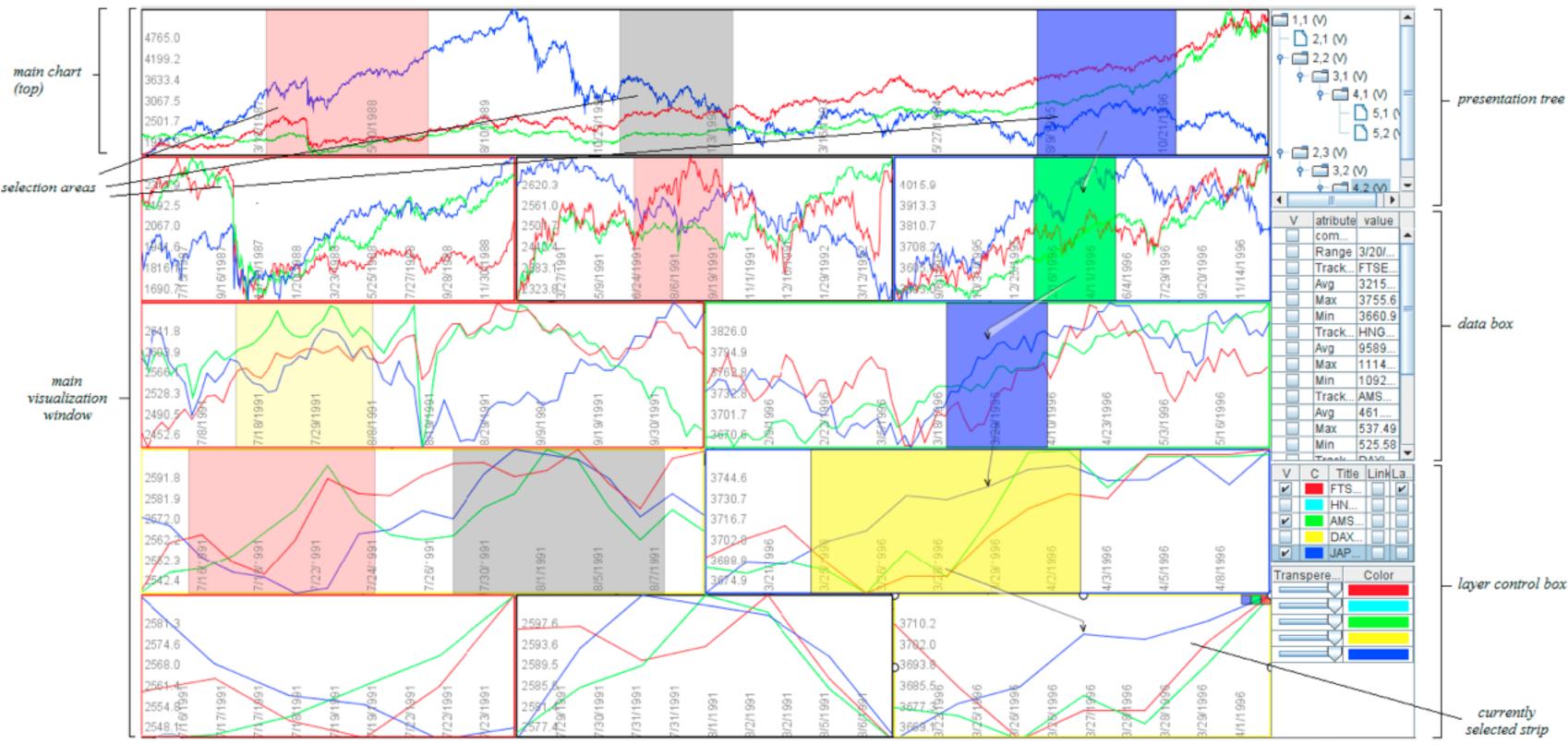
-discuss/sketch possible visual encodings appropriate for your assigned scenario

- Reportback: 20-30 min
 - -3 min from each group
- Design space examples/discussion: 20-30 min

Case A: 3D Approach (Not Recommended)


• extruded curves: detailed comparisons impossible

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]

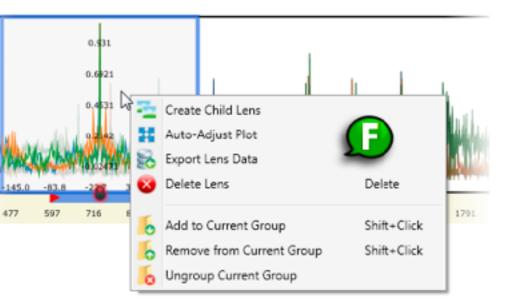

Case A: Cluster-Calendar Solution

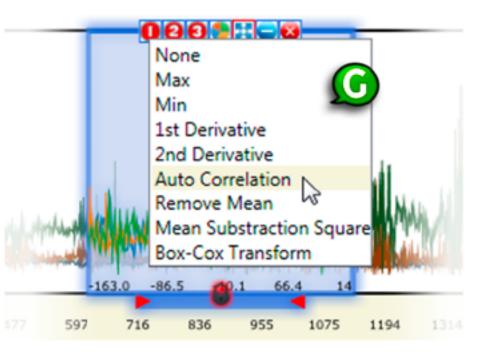
- derived data: cluster hierarchy
- juxtapose multiple views: calendar, superimposed 2D curves

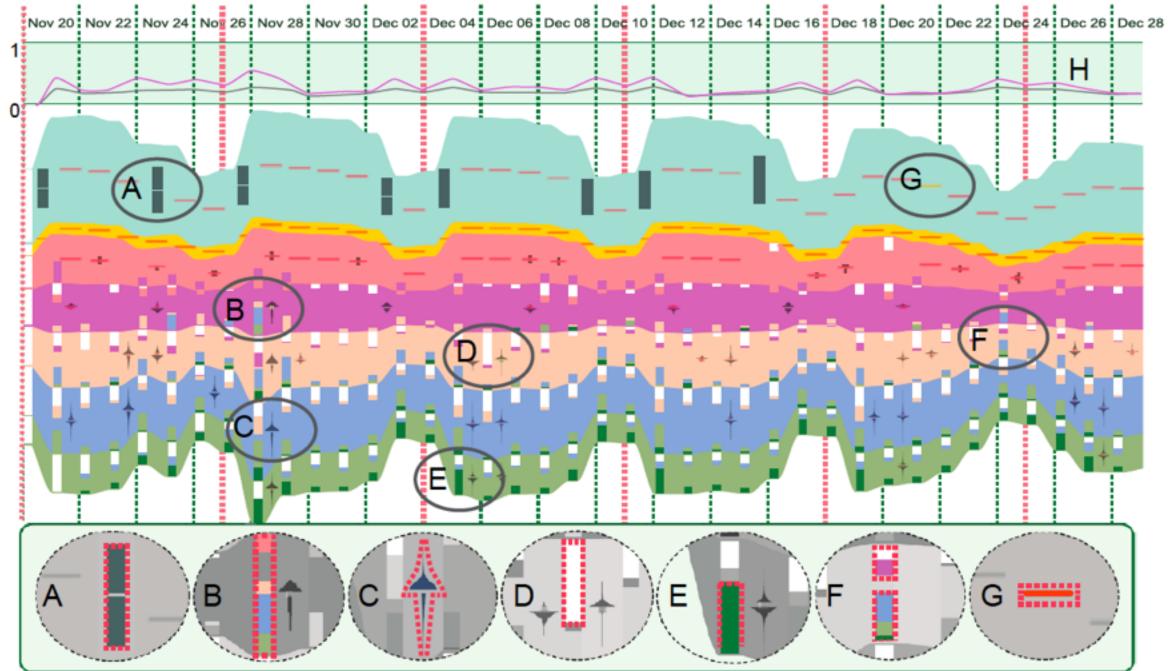
[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]


Case B: Stack Zooming

[Stack Zooming for Multi-Focus Interaction in Time-Series Data Visualization. Javed and Elmqvist. Proc PacificVis 2010, p 33-40.]

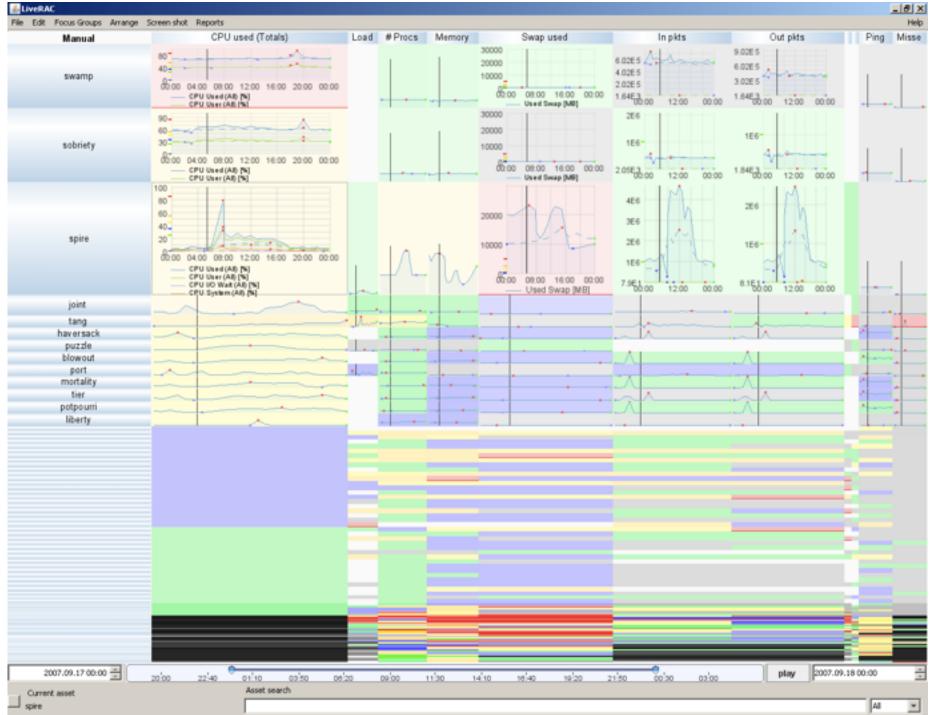

https://youtu.be/dK0De4XPm5Y


Case C: ChronoLenses


[Exploratory Analysis of Time-Series with ChronoLenses. Zhao, Chevalier, Pietriga, and Balakrishnan. IEEE TVCG 17(12):2422-2431 (Proc. InfoVis 2011).]

https://youtu.be/k7pl8ikczqk

Case D: RankExplorer



[RankExplorer:Visualization of Ranking Changes in Large Time Series Data. Shi, Cui, Liu, Xu, Chen and Qu. IEEE TVCG 12(18):2669-2678 (Proc. InfoVis 2012)]

https://youtu.be/rdgnlqcZ2A4

Case E: LiveRAC video

[LiveRAC - Interactive Visual Exploration of System Management Time-Series Data. McLachlan, Munzner, Koutsofios, and North. Proc. Conf. on Human Factors in Computing Systems (CHI) 2008, pp 1483-1492.]

http://youtu.be/ld0c3H0VSkw

14

Next Time

• to read

-VAD book, Ch 1: What's Vis, and Why Do It?

-VAD book, Ch 2: What: Data Abstraction

-VAD book, Ch 3: Why: Task Abstraction

-paper: Design Study Methodology

28