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Goals Basic Encoding Problem Graph Transformations
e Provide an intuitive overview
o Recognize similarities and differences between graph components — e Standard graph layout techniques don’t work well out of Remove non-critical nodes
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Extract Auxiliary nodes from the graph

o Many high-degree nodes turn out to be not that important
= NoOp nodes
wu Declaring/initializing variables
m Nodes that compute statistics

o Nodes extracted and put to the right of the whole graph

Small proxy icons to embedded in neighbouring nodes

Graph Transformations

Deep Learning models have highly
repeated structure

Group nodes with identical subgraphs have the
same color

Finding these subgraphs is NP-hard

VAD Analysis

What: Data
o Network
What: Derived

.

Cluster hierarchy
o Edges bundled

o Nodes removed or embedded

Scale:
© 1000s of nodes

e How: Encode

o Ellipse/Rectangle marks for

nodes, connection marks for links

o Why: Tasks

o Make graph understandable

Demo

Critique

Positive Negative
e Provides an intuitive overview e No two-way editing
of the dataflow graph

e Can be hard to tell quickly how
the data flows through the
network

e Makes it easier to debug deep
learning models
e Debugging could be improved

o Infinitely better than sketches if integrated with tests

o Diff-viewer would also aid
debugging




