Modeling Color Difference for Visualization Design

Danielle Albers Szafir Proc. InfoVis 2017

Are the colours the same or different?

- •
- •

$$
\bullet \bullet
$$

- •

Just noticeable differences (JNDs)

the point at which we can notice the difference 50% of the time

CIE L*A*B* colour space: perceptually equal steps

Black

Visualizations are more complex

goal: build qualitative understanding of color perception in visualization

Assumptions

Simple World

Isolation

Geometric

Assumptions

Simple World

Isolation

Geometric

Assumptions

Simple World

Isolation

Geometric

Solution

Simple World
Isolation

Geometric

amazon
 beta mechanical turk

Solution

Simple World
Isolation
Geometric
crowdsource
distractors

Solution

Simple World
Isolation
Geometric
crowdsource
distractors
varied mark shape, size

Scatterplots

72 participants
factors:

- 6 diameters \times
- 6 color differences \times
- 3 color axes
each participant saw each diameter \times color difference twice

Scatterplots

Bar charts

Bar charts

Line graphs

72 participants
factors:

- 6 thicknesses \times
- 6 color differences \times
- 3 color axes

Line graphs

50\% JND for Lines

ColorBrewer

not robust to smaller mark sizes!

Applications

Large Points

0000000

Applications

Small Points

Applications

Limitations

Author:

- only two marks were coloured - contrast differences absent
- marks tested at fixed distances and aligned

Limitations

Author:

- only two marks were coloured - contrast differences absent
- marks tested at fixed distances and aligned

Amon:

- colour distance ΔE in CIEL*a*b* space is non-uniform to begin with
- rather than overfit to CIEL*a*b*, start with a raw colour space
- staircase method to sample more data around JND

Thanks!

paper page: http://cmci.colorado.edu/visualab/VisColors/index.html

