Modeling Color Difference for Visualization Design

Danielle Albers Szafir
Proc. InfoVis 2017

Are the colours the same or different?

Just noticeable differences (JNDs)

the point at which we can notice the difference 50% of the time

CIE L*a*b* colour space: perceptually equal steps

Visualizations are more complex

Assumptions
Simple World
Isolation
Geometric

Solution
crowdsource
don'
th

distractors

varied mark shape, size

Scatterplots

72 participants
factors:
- 6 diameters × 6 color differences × 3 color axes
each participant saw each diameter × color difference twice
Scatterplots

Bar charts

288 participants

- 6 thicknesses ×
- 8 lengths
- 6 color differences ×
- 3 color axes

Bar charts

72 participants

- 6 thicknesses ×
- 6 color differences ×
- 3 color axes

Line graphs

72 participants

- 6 thicknesses ×
- 6 color differences ×
- 3 color axes

ColorBrewer

- not robust to smaller mark sizes!

Applications

- only two marks were coloured - contrast differences absent
- marks tested at fixed distances and aligned

Limitations

- only two marks were coloured - contrast differences absent
- marks tested at fixed distances and aligned

 Author:

 - colour distance ΔE in CIEL*a*b* space is non-uniform to begin with
 - rather than overfit to CIEL*a*b*, start with a raw colour space
 - staircase method to sample more data around JND

Amon:

- colour distance ΔE in CIEL*a*b* space is non-uniform to begin with
- rather than overfit to CIEL*a*b*, start with a raw colour space
- staircase method to sample more data around JND

Thanks!

paper page: http://cmci.colorado.edu/visualab/VisColors/index.html