Ch 13: Reduce Items and Attributes
Ch 14: Embed: Focus+Context

Tamara Munzner
Department of Computer Science
University of British Columbia

CPSC 547, Information Visualization
Day 15: 28 February 2017

http://www.cs.ubc.ca/~tmm/courses/547-17
News

• topic/date assignments out soon
 – got last straggler just minutes ago
• marks for pitches and L12/L13/L14 out soon

• next time
 – I’ll discuss presentation expectations
 • and give example presentation
 – new room! in Forestry (2424 Main Mall), Room 2300 A

• reminder: meetings due by Fri 5pm
• reminder: proposals due by Mon 5pm
Idiom design choices: Part 2

<table>
<thead>
<tr>
<th>Mani pulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄 Change</td>
<td>🔄 Juxtapose</td>
<td>🔄 Filter</td>
</tr>
<tr>
<td>🔄 Select</td>
<td>🔄 Partition</td>
<td>🔄 Aggregate</td>
</tr>
<tr>
<td>🔄 Navigate</td>
<td>🔄 Superimpose</td>
<td>🔄 Embed</td>
</tr>
</tbody>
</table>

- **Manipulate**
 - Change
 - Select
 - Navigate

- **Facet**
 - Juxtapose
 - Partition
 - Superimpose

- **Reduce**
 - Filter
 - Aggregate
 - Embed
Reduce items and attributes

- reduce/increase: inverses
- filter
 - pro: straightforward and intuitive
 - to understand and compute
 - con: out of sight, out of mind
- aggregation
 - pro: inform about whole set
 - con: difficult to avoid losing signal
- not mutually exclusive
 - combine filter, aggregate
 - combine reduce, change, facet
Idiom: **dynamic filtering**

- item filtering
- browse through tightly coupled interaction
 — alternative to queries that might return far too many or too few

System: **FilmFinder**

Idiom: **DOSFA**

- attribute filtering
- encoding: star glyphs

Idiom: **histogram**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - new table: keys are bins, values are counts
- bin size crucial
 - pattern can change dramatically depending on discretization
 - opportunity for interaction: control bin size on the fly
Continuous scatterplot

- static item aggregation
- data: table
- derived data: table
 - key attrs x,y for pixels
 - quant attr: overplot
density
- dense space-filling 2D matrix
- color: sequential
categorical hue +
ordered luminance colormap

Idiom: **scented widgets**

- augment widgets for filtering to show *information scent*
 - cues to show whether value in drilling down further vs looking elsewhere
- concise, in part of screen normally considered control panel

Idiom: **boxplot**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 5 quant attrs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]
Idiom: **Hierarchical parallel coordinates**

- dynamic item aggregation
- derived data: *hierarchical clustering*
- encoding:
 - cluster band with variable transparency, line at mean, width by min/max values
 - color by proximity in hierarchy

Spatial aggregation

• MAUP: Modifiable Areal Unit Problem
 – gerrymandering (manipulating voting district boundaries) is one example!

[http://www.e-education.psu.edu/geog486/l4_p7.html, Fig 4.cg.6]
Dimensionality reduction

• attribute aggregation
 – derive low-dimensional target space from high-dimensional measured space
 – use when you can’t directly measure what you care about
 • true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
 • latent factors, hidden variables

Tumor Measurement Data

data: 9D measured space

→ DR

derived data: 2D target space

Malignant
Benign
Dimensionality reduction for documents

Task 1
- **In:** High-dimensional data
- **Out:** 2D data

What?
- In High-dimensional data
- Out 2D data

Why?
- Produce
- Derive

Task 2
- **In:** 2D data
- **Out:** Scatterplot Clusters & points

What?
- In 2D data
- Out Scatterplot
- Out Clusters & points

Why?
- Discover
- Explore
- Identify

How?
- Encode
- Navigate
- Select

Task 3
- **In:** Scatterplot Clusters & points
- **Out:** Labels for clusters

What?
- In Scatterplot
- In Clusters & points
- Out Labels for clusters

Why?
- Produce
- Annotate
Dimensionality vs attribute reduction

• vocab use in field not consistent
 – dimension/attribute

• attribute reduction: reduce set with filtering
 – includes orthographic projection

• dimensionality reduction: create smaller set of new dims/attrs
 – typically implies dimensional aggregation, not just filtering
 – vocab: projection/mapping
Further reading

 —Chap 13: Reduce Items and Attributes

Embed: Focus+Context

• combine information within single view
• elide
 – selectively filter and aggregate
• superimpose layer
 – local lens
• distortion design choices
 – region shape: radial, rectilinear, complex
 – how many regions: one, many
 – region extent: local, global
 – interaction metaphor
Idiom: **DOITrees Revisited**

- **elide**
 - some items dynamically filtered out
 - some items dynamically aggregated together
 - some items shown in detail

Idiom: **Fisheye Lens**

- distort geometry
 - shape: radial
 - focus: single extent
 - extent: local
 - metaphor: draggable lens

http://tulip.labri.fr/TulipDrupal/?q=node/351
http://tulip.labri.fr/TulipDrupal/?q=node/371
Idiom: **Stretch and Squish Navigation**

- distort geometry
 - shape: rectilinear
 - foci: multiple
 - impact: global
 - metaphor: stretch and squish, borders fixed

System: **TreeJuxtaposer**

Distortion costs and benefits

• benefits
 – combine focus and context information in single view

• costs
 – length comparisons impaired
 • network/tree topology comparisons unaffected: connection, containment
 – effects of distortion unclear if original structure unfamiliar
 – object constancy/tracking maybe impaired

Further reading

 – Chap 14: Embed: Focus+Context

Next Time

• Thu Mar 2, to read
 – VAD Ch. 15: Case Studies
 • several examples of analysis with full framework

• reminders:
 – meetings due by Fri Mar 3, 5pm
 – proposals due by Mon Mar 6, 5pm