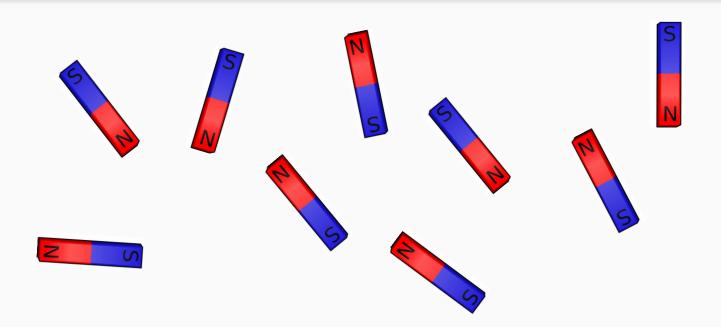
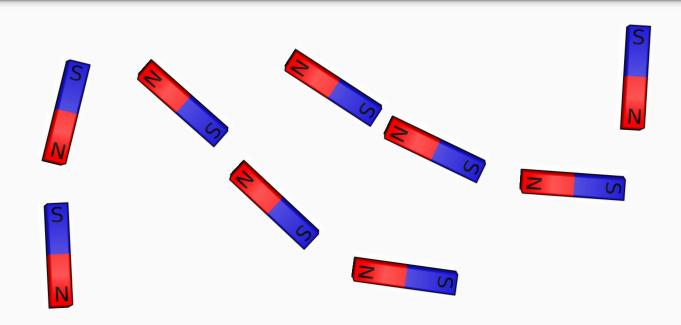
Visualisations for Quantum Annealing Researchers

Presentation by: Austin Wallace. April 25, 2017

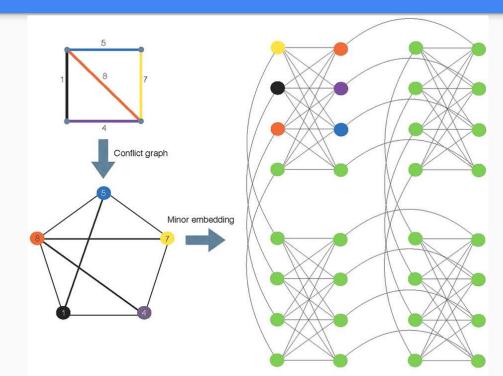

Background

- Developing tools for researchers to better investigate the quantum annealing process
- Quantum annealing is an optimization process to minimizes the energy of a physical system using quantum effects
- Design study: Future work and implementation to be continued in industry at 1QBit


Motivation

- While the quantum annealing field is quickly expanding, relevant visualization techniques lag behind
- Researchers in the field have expressed discontent with the visualization tools available to them
- Many choices when deciding on models in the field are based on intuition, and useful visualizations are key to building a good intuition

Qubit



Qubit

Background on Quantum Annealing

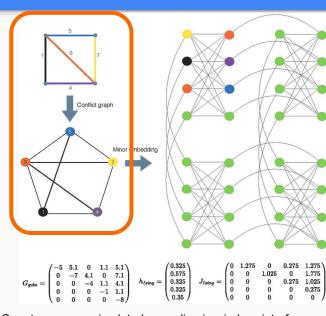
- System to minimize: A graph
- Biases are preference to be in one state or the other
- Couplings are preference for two linked nodes to be in the same state or opposite states
- Can be in conflict, so quantum annealer minimizes that conflict, represented as the energy

Data Abstraction

What are we visualizing?

The problem, the process, and the results

Primary sources of data:


- 1. The original problem
- 2. The embedding of the problem
- 3. The parameters and properties of the solver
- 4. The results of the solver

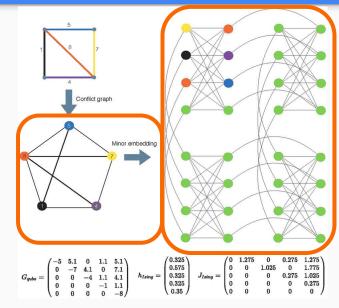
1: Original Problem

Specific type of optimization problem (QUBO)

Can be represented as a node-link network: G(V, E),:

- V: Represent biases on each vertex. <~2000
 - \circ Sign: $+ \rightarrow 1, \rightarrow 0$
 - Magnitude: ↑ → Stronger bias
- E: Represents bias between vertices <~5000
 - \circ Sign: $+ \rightarrow$ Correlation, \rightarrow Anticorrelation
 - \circ Magnitude: $\uparrow \rightarrow$ Stronger bias

Wang, Chen, Jonckheere


2: Embedding

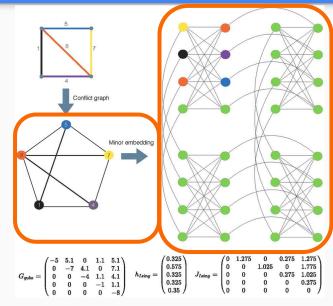
Embedding:

How to fit a densely connected problem onto a sparsely connected physical graph?

Solution: Create chains

A single node in the original may be represented as a path of strongly correlated nodes

Quantum versus simulated annealing in wireless interference network optimization Wang, Chen, Jonckheere


2: Embedding

Representation of embedded graph: G=(V,E,E_chain)

- E: Edges required in the original graph
- E_chain: Edges required for embedding.
 - E_chain>>0, E_chain > |E|

Quality of embedding still topic of active research.

Maximum chain length an important metric

Quantum versus simulated annealing in wireless interference network optimization
Wang, Chen, Jonckheere 10

3: Solver Properties and Parameters

Structure of the physical graph

- Distinct from embedding, embedding defines how much is used
- Chimera for DWave: Densely connected blocks, sparsely connected to neighboring blocks

Annealing time (On scale of microseconds)

How long is spent finding each individual solution

4: Solver Results

A list of solutions

- Anywhere from ~50 to ~5000 solutions
- All received at the same time, using the same parameter values

Each solution is a scalar energy value, along with a dictionary

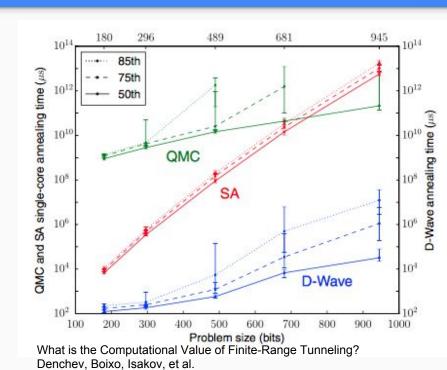
- Lower energy generally means better solution
- Dictionary is assignment of values to each variable
- Dictionary has unique energy, converse not always true

Task Abstraction

Focus:

- Compare algorithm performance
- Compare distributions of solutions
- Discover features in distribution of broken chains

Also:

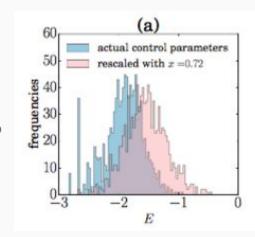

- Derive features of invariant nodes across solutions
- Discover difficulty of problem based on solutions
- Summarize topology of original and embedded graphs

Compare algorithm performance

- Is this working well?
- Strong idioms applicable across fields
- Can compare between algorithm classes, or within class while varying parameters

Pictured:

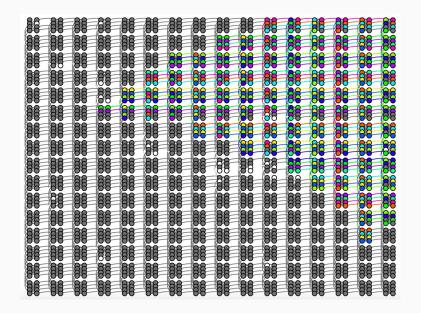
 Comparison of scaling properties for three annealing algorithms

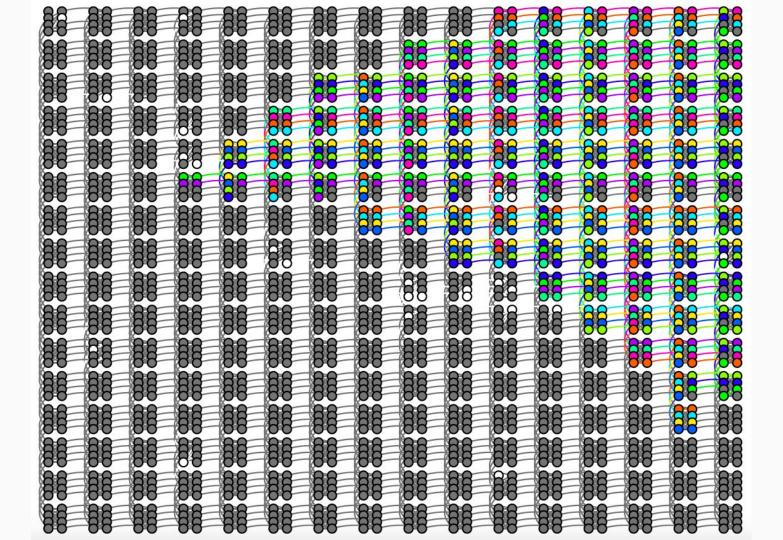


Compare distributions of solutions

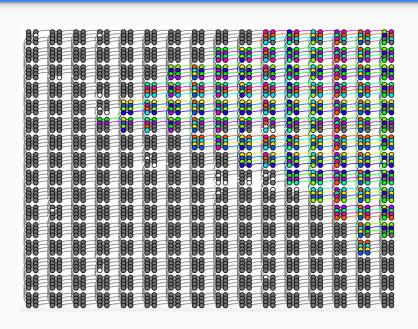
- Strong base of previous work, i.e. Histogram
- More involved and nuanced comparison
- Domain-specific subtasks: Sub-distributions per energy
- How do results compare with known distribution?

Pictured:

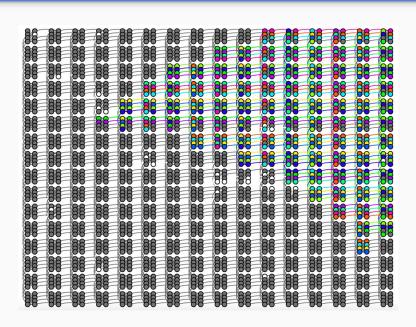

 Comparing distributions that arise from varying a parameter, holding all else constant



Estimation of effective temperatures in quantum annealers for sampling applications:


Discover features in distribution of broken chains

- Entirely specific to quantum annealing
- What embedding patterns lead to broken chains?
- How often are chains of different lengths breaking?


Current visualization: Broken Chains

EXPLANATION

- Qubit: Point mark
- Coupler: Connection mark
- Qubits in use: Encoded by color
- Broken qubit: Encoded by color
- Qubit in chain: Encoded by color

Current visualization methods: Chaining

CRITIQUE

- Hard to quickly distinguish between different chains
- Which chains are stable?
- What points are the intersection of many different chains?

Redesign of the broken chain visualization

How? Overview first, detail on demand

- Overview:
 - Distribution of chain length, as well as distribution of instability.
 - Heatmap of intersections of chains, with reduced focus on specific chains
- Encode chains as enclosure marks, with outlines as well as colors.
- Interaction: Identify highly unstable and/or large chains through highlighting
- Detail view on identified chains, showing location of breaks and interactions with adjacent chains.

Future work/Conclusion

- Designing new views
 - Correspondence between original and embedded problems
- Implementation
 - Standardizing inputs and outputs
 - Connecting with tools already in use
 - Implement with extensibility in mind