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Background

e Developing tools for researchers to better investigate the quantum
annealing process

e Quantum annealing is an optimization process to minimizes the energy of
a physical system using quantum effects

e Design study: Future work and implementation to be continued in industry
at 1QBit



Motivation

e While the quantum annealing field is quickly expanding, relevant
visualization techniques lag behind

e Researchers in the field have expressed discontent with the visualization
tools available to them

e Many choices when deciding on models in the field are based on intuition,
and useful visualizations are key to building a good intuition









Background on Quantum Annealing

e System to minimize: A graph

e Biases are preference to be in
one state or the other

e Couplings are preference for two
linked nodes to be in the same
state or opposite states
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annealer minimizes that conflict, N
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Data Abstraction

What are we visualizing?
e The problem, the process, and the results
Primary sources of data:

The original problem

The embedding of the problem

The parameters and properties of the solver
The results of the solver
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1: Original Problem

Specific type of optimization problem (QUBO)

Can be represented as a node-link network: G(V, E),:

e V:Represent biases on each vertex. <~2000
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2. Embedding

Embedding:

e How to fit a densely connected problem onto a
sparsely connected physical graph?
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Solution:; Create chains

e A single node in the original may be represented — N
as a path of strongly correlated nodes GM(E kL %Ei] [) w[ Wk )
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2. Embedding

Representation of embedded graph: G=(V,E,E_chain) * E ’
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e E: Edges required in the original graph /
e E_chain: Edges required for embedding.
o E_chain>>0, E_chain > |E|
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Quality of embedding still topic of active research.
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3. Solver Properties and Parameters

Structure of the physical graph

e Distinct from embedding, embedding defines how much is used
e Chimera for DWave: Densely connected blocks, sparsely connected to
neighboring blocks

Annealing time (On scale of microseconds)

e How long is spent finding each individual solution
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4: Solver Results

A list of solutions

e Anywhere from ~50 to ~5000 solutions
e All received at the same time, using the same parameter values

Each solution is a scalar energy value, along with a dictionary

e Lower energy generally means better solution
e Dictionary is assignment of values to each variable

e Dictionary has unique energy, converse not always true
12



Task Abstraction

Focus:

e Compare algorithm performance
e Compare distributions of solutions
e Discover features in distribution of broken chains

Also:

e Derive features of invariant nodes across solutions
e Discover difficulty of problem based on solutions
e Summarize topology of original and embedded graphs 2



Compare algorithm performance
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What is the Computational Value of Finite-Range Tunneling?
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Compare distributions of solutions

e Strong base of previous work, i.e. Histogram
(a)

e More involved and nuanced comparison ?ﬂ-m s
e Domain-specific subtasks: Sub-distributions per gj B uecalad wish 2 =072
energy 'Em -

e How do results compare with known distribution? g
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e Comparing distributions that arise from varying a
Estimation of effective temperatures in quantum annealers for sampling

parameter, holding all else constant applications:

A case study with possible applications in deep learning 15
Benedettii, Realpe--Gomez, Biswas, et al
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Entirely specific to quantum annealing

What embedding patterns lead to
How often are chains of different
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Current visualization

Broken Chains
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Redesign of the broken chain visualization

How? Overview first, detail on demand

Overview:

o Distribution of chain length, as well as distribution of instability.

o Heatmap of intersections of chains, with reduced focus on specific chains
Encode chains as enclosure marks, with outlines as well as colors.
Interaction: Identify highly unstable and/or large chains through highlighting
Detail view on identified chains, showing location of breaks and interactions
with adjacent chains.
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Future work/Conclusion

e Designing new views
o Correspondence between original and embedded problems

e Implementation
o Standardizing inputs and outputs
o Connecting with tools already in use
o Implement with extensibility in mind

Thank you!
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