
ThreadViewer:	Visualizing	and	Comparing	Thread	Behavior	in	a	
Program	Execution	

CPSC	547	Project	Proposal	

Augustine	Wong	augustine.wong@alumni.ubc.ca	

	

Domain,	Task,	Dataset	

Debugging	the	performance	of	computer	programs	is	a	challenging	and	time	consuming	software	
development	task.		A	recent	survey	of	308	engineers	revealed	that	92%	of	them	encountered	
performance	issues	in	the	preceding	year,	with	each	issue	taking	on	average	80	hours	to	fix	[1].		The	
typical	method	engineers	employ	to	do	performance	debugging	is	to	use	performance	tools	which	
record	detailed	execution	traces	of	program	execution.		Engineers	then	analyze	these	traces	to	
determine	the	root	causes	of	performance	bugs.		

My	university	research	group	created	a	suite	of	performance	tools	called	DINAMITE	which	can	collect	
execution	traces	of	single	host	multi-threaded	programs	[2].		The	execution	traces	created	by	DINAMITE	
are	in	table	format,	with	each	item	in	the	tables	representing	an	“event”	which	occurred	in	the	
computer	programs.		We	define	an	event	as	being	a	point	in	time	when	a	thread	either	entered	or	
exited	a	function.		Each	item	therefore	contains	the	following	attributes:	

Tid	–	Because	DINAMITE	can	instrument	multi-threaded	programs,	each	item	has	a	categorical	tid	
attribute	which	identifies	the	thread	which	entered	or	exited	a	function.	

Func	–	The	name	of	the	function	which	the	thread	identified	by	the	tid	attribute	either	entered	or	
exited.		The	func	attribute	is	categorical.	

Dir	–	Indicates	whether	the	thread	identified	by	the	tid	attribute	was	entering	into	the	function	or	
exiting	the	function.		The	dir	attribute	is	categorical.	

Time	–	The	time	stamp	which	indicates	when	the	event	took	place.		The	time	attribute	is	quantitative.		
By	subtracting	the	time	when	a	thread	entered	a	function	from	the	time	when	a	thread	exited	the	same	
function,	we	obtain	the	duration	of	that	particular	function	call	instance.			

Below	is	a	snapshot	of	a	DINAMITE	execution	trace	which	captured	the	activity	of	an	application	thread	
in	Wired	Tiger,	a	key-value	store	used	by	MongoDB.		Note	that	items	with	dir	equal	to	0	represent	the	
thread	entering	a	function	while	items	with	dir	equal	to	1	represent	the	thread	exiting	a	function.	



	

Figure	1:	Snapshot	of	a	DINAMITE	execution	trace	

The	items	in	the	execution	trace	are	ordered	by	the	time	attribute.		Notice	that	there	are	sections	in	the	
execution	trace	where	multiple	items	with	dir	equal	to	0	are	grouped	together;	these	groupings	indicate	
that	the	thread	called	functions	which	in	turn	called	other	functions.		Therefore,	from	analyzing	
DINAMITE	execution	traces,	we	can	discover	a	thread’s	“call	stack”	with	respect	to	time.			

Apart	from	being	able	to	create	execution	traces,	DINAMITE	includes	tools	to	analyze	and	visualize	the	
traces.		One	such	tool	called	TimeSquared	is	used	to	visualize	thread	callstacks	over	time.		An	example	of	
what	a	TimeSquared	visualization	looks	like	is	shown	in	Figure	2	below.	

	

	

Figure	2:	Callstack	visualization	with	TimeSquared	

To	create	the	TimeSquared	visualizations,	we	transform	our	execution	traces	from	quantitatively	
ordered	sequences	of	function	entry/exit	events	to	quantitatively	ordered	sequences	of	function	calls.		
Each	item	representing	a	function	call	has	the	attributes	tid,	func,	entry	time,	duration,	and	callstack	
level.		We	derive	the	durations	of	function	calls	by	subtracting	entry	times	from	the	corresponding	exit	
times.		We	also	examine	the	entry	and	exit	times	to	derive	the	callstack	levels	of	the	function	calls.		

TimeSquared	represents	function	calls	with	line	marks.		The	entry	time	of	a	function	call	is	represented	
by	the	horizontal	spatial	positioning	channel	and	the	duration	is	represented	by	the	horizontal	length	
channel.		The	color	channel	is	used	to	encode	the	func	attribute.		Function	calls	made	by	the	same	



thread	are	grouped	into	their	own	rows.		The	callstack	level	of	each	function	call	is	encoded	by	the	
vertical	spatial	positioning	within	the	rows.	

The	strengths	of	TimeSquared	are	that	we	can	easily	see:	

• The	activities	of	all	threads	at	once	
• Dependencies	between	functions;	child	functions	are	shown	directly	above	their	parents	
• The	entry	time	and	duration	of	each	function	call	

However,	TimeSquare’s	method	of	visualizing	traces	does	not	scale	to	large,	real-world	traces.		For	
example,	a	DINAMITE	execution	trace	capturing	over	1	minute	of	WiredTiger	activity	contained	
approximately	200	million	events	(or	approximately	100	million	function	calls)	spread	across	28	threads.		
The	same	execution	trace	also	captured	over	100	thousand	different	function	types.		TimeSquared	
visualizations	with	millions	of	function	calls	would	be	unfeasibly	large;	additionally,	using	the	color	
channel	to	categorize	functions	is	no	longer	realistic.	

To	overcome	this	scalability	issue,	we	use	a	“Search,	Show	Context,	Expand	on	Demand”	approach	when	
visualizing	traces	with	Time	Squared.		Instead	of	trying	to	analyze	entire	traces,	we	focus	on	examining	
portions	of	the	traces	which	contain	function	“outliers”.		We	consider	outliers	to	be	function	calls	with	
excessive	duration	times.			

To	find	these	outliers,	we	derive	2	new	attributes	from	the	quantitatively	ordered	sequences	of	function	
calls	we	use	to	create	the	TimeSquared	visualizations:	

Average	duration	–	The	average	duration	of	all	calls	to	the	function	defined	by	the	func	categorical	
attribute.		For	instance,	if	the	func	attribute	for	the	dataset	item	is	“foo”,	then	the	average	duration	
attribute	for	the	dataset	item	will	equal	to	the	average	duration	for	all	foo	function	calls.	

Standard	deviation	–	The	standard	deviation	of	all	calls	to	the	function	defined	by	the	func	categorical	
attribute.	

After	deriving	these	attributes,	we	filter	out	any	dataset	items	with	durations	that	are	not	two	standard	
deviations	above	average;	the	items	which	remain	represent	function	outliers.		From	the	entry	time	and	
duration	attributes,	we	know	the	time	ranges	of	each	outlier.		We	also	know	from	the	TID	attribute	
which	threads	executed	the	outliers.		We	can	therefore	located	the	function	outliers	in	the	traces.	

But	even	if	we	filter	execution	traces	of	uninteresting	events,	two	problems	still	remain.		Firstly,	function	
outliers	themselves	may	still	be	too	large	to	visualize	with	TimeSquared.		One	of	our	WiredTiger	
DINAMITE	traces	captured	an	outlier	function	lasting	60	seconds;	during	those	60	seconds,	the	
application	thread	executed	over	11	million	function	entry/exit	events.		Secondly,	we	cannot	
conveniently	use	TimeSquared	to	compare	events	between	two	distant,	discrete	time	ranges	within	the	
same	program	execution.		For	instance,	we	would	have	difficulty	using	TimeSquared	to	compare	a	
portion	of	a	trace	which	contains	function	outliers	to	another	portion	of	the	same	trace	which	contains	
function	calls	of	typical	durations.		

Consequently,	we	propose	to	make	ThreadViewer,	a	new	visualization	tool	which	supports	the	following	
tasks:	



• Summarize	large	portions	of	an	execution	trace	to	save	on	screen	real	estate.		We	can	still	use	
the	filtering	technique	described	above	to	limit	the	number	of	events	we	need	to	summarize.		
But	even	with	filtering,	we	may	still	need	to	summarize	millions	of	events.	

• Compare	events	between	two	different	portions	of	the	same	trace	so	that	we	can	determine,	
for	example,	why	one	function	call	is	an	outlier	while	another	call	to	the	same	function	has	a	
typical	duration.	

• Discover	which	parts	of	an	execution	trace	are	worth	examining	further	with	TimeSquared.		
Despite	having	some	deficiencies,	TimeSquared	is	still	a	good	tool	for	analyzing	execution	traces.		
ThreadViewer	will	help	us	identify	more	precisely	the	parts	of	an	execution	trace	contain	the	
performance	bugs.		Then	we	can	use	TimeSquared	to	investigate	those	performance	bugs.		By	
identifying	more	precisely	the	parts	of	the	execution	trace	we	are	interested	in	examining,	we	
minimize	the	number	of	items	TimeSquared	needs	to	display.							

To	make	our	infovis	problem	more	tractable,	we	can	reduce	the	number	of	attributes	we	need	to	
visually	encode.		By	getting	rid	of	the	time	attribute,	we	transform	our	execution	traces	into	ordinal	
sequences	of	function	entries	and	exits;	such	sequences	would	require	less	screen	real	estate	than	Time	
Squared	to	display	because	we	no	longer	need	to	use	the	horizontal	spatial	position	and	horizontal	
length	channels	to	represent	entry	time	and	duration	respectively.		Although	knowing	the	durations	of	
each	function	call	is	very	important	for	performance	debugging,	there	are	several	reasons	for	why	it	is	
still	valuable	to	examine	ordinal	sequences	of	execution	events.		Firstly,	we	may	simply	want	to	analyze	
if	a	thread	is	doing	anything	abnormal	like	going	to	sleep	frequently.		Secondly,	since	we	no	longer	need	
to	use	the	horizontal	spatial	positioning	channel	and	the	horizontal	length	channel	to	encode	function	
entry	times	and	durations,	we	can	easily	align	different	parts	of	an	execution	trace	beside	each	other	for	
comparison.			And	thirdly,	ThreadViewer	is	intended	to	work	in	harmony	with	TimeSquared	which	
already	encodes	the	time	attribute.	

Although	getting	rid	of	the	time	attribute	reduces	the	scope	of	our	infovis	problem,	we	still	need	to	
summarize	our	traces	to	save	on	screen	real	estate.		One	technique	we	can	employ	to	summarize	our	
traces	is	to	use	data	compression	algorithms.			Data	compression	algorithms	excel	at	finding	repetitive	
patterns	within	sequences	of	data	items.		Fortunately,	threads	have	tendencies	to	repeatedly	execute	
the	same	sequences	of	functions	over	a	substantial	periods	of	time;	an	example	of	this	repetition	is	a	
thread	constantly	evicting	memory	pages.		Thus,	we	can	employ	data	compression	algorithms	to	
highlight	repetitions	in	program	behavior	and	to	collapse	execution	traces	into	compressed	forms.			

SEQUITUR	is	one	example	of	a	data	compression	algorithm.		The	SEQUITUR	algorithm	was	developed	by	
Nevill-Manning	and	Witten	to	compress	sequences	of	discrete	symbols.		Below	is	a	demonstration	of	
how	SEQUITUR	compresses	a	string	of	characters:	



	

Figure	3:	SEQUITUR	compressing	a	string	of	characters	

SEQUITUR	produces	context-free	grammar.		In	Figure	3,	we	can	see	that	the	context-free	grammar	
generated	by	SEQUITUR	has:	

• Terminals	{a,	b,	c,	d}	
• 3	non-terminals	{0,	1,	2}	
• Non-terminal	0	as	the	starting	point	for	the	language	
• 3	production	rules	which	map	the	non-terminals	to	sequences	of	terminals	and	non-terminals	

We	can	represent	context-free	grammar	as	a	parse-tree.		Figure	4	below	shows	the	parse-tree	of	the	
grammar	derived	in	Figure	3.		The	nodes	representing	the	terminals	are	colored	yellow.			

	

Figure	4:	Parse	tree	representation	of	context	free	grammar	

Walkinshaw	et	al	posited	that	an	execution	trace	converted	to	an	ordinal	sequence	of	discrete	symbols	
can	be	compressed	using	SEQUITUR	[3].		Figure	5	shows	how	Walkinshaw	et	al	used	SEQUITUR	to	
compress	a	toy	execution	trace:	



	

Figure	5:	SEQUTIUR	compressing	a	toy	execution	

The	“original	trace”	in	Figure	5	is	an	ordinal	sequence	of	function	entry	events,	presumably	executed	by	
a	single	thread.		Each	item	in	this	ordinal	sequence	is	mapped	to	a	discrete	symbol	and	passed	into	
SEQUITUR.		Thus,	the	terminals	in	Figure	5	are	the	individual	function	entry	events	recorded	in	the	trace.		
Production	rule	0	represents	the	complete	trace	and	the	other	rules	represent	“phases”	and	
“subphases”	occurring	within	the	trace.			

With	the	SEQUITUR	algorithm,	we	now	have	a	method	of	summarizing	the	behavior	of	each	thread	
captured	in	our	execution	traces.		However,	one	drawback	to	using	the	SEQUITUR	algorithm	is	that	it	
generates	log2N	production	rules	if	it	encounters	N	continuous	repetitions	of	a	group	of	symbols.		For	
example,	suppose	a	thread	attempted	to	acquire	a	lock	64	times.		The	thread’s	execution	trace	would	
then	consist	of	64	repetitions	of	“Entering	lock	function,	Exiting	lock	function”:		

The	SEQUITUR	algorithm	compressing	such	a	trace	will	create	the	following	production	rules:	

0	->	1,	1	
1	->	2,	2	
2	->	3,	3	
3	->	4,	4	
4	->	5,	5	
5	->	6,	6	
6	->	Entering	lock	function,	Exiting	lock	function	

SEQUITUR	will	produce	6	rules,	not	including	rule	0.		Yet	the	majority	of	these	rules	are	meaningless	for	
understanding	how	the	thread	is	behaving;	we	do	not	care,	for	instance,	that	rule	3	consists	of	two	
consecutive	instances	of	rule	4.		Ideally,	we	want	to	see	N	continuous	repetitions	of	a	group	of	events	
represented	by	one	production	rule.		Therefore,	we	will	need	to	do	some	post-processing	of	the	
production	rules	to	eliminate	meaningless	rules.			

Expertise	

I	am	a	computer	hardware	engineer	and	have	some	basic	knowledge	about	multi-threaded	
programming.		I	also	acquired	some	JavaScript	and	D3.js	[4]	programming	experience	from	helping	my	
university	research	group	to	develop	the	visual	encoding	used	in	TimeSquared.			



To	develop	ThreadViewer,	I	will	use	the	professors	leading	my	research	group	as	my	domain	experts.		
These	professors	have	used	TimeSquared	to	find	performance	issues	in	WiredTiger.		Therefore,	I	can	
consult	with	them	to	define	the	domain	tasks	and	to	determine	how	ThreadViewer	can	best	compliment	
TimeSquared.	

Proposed	Infovis	Solution	

I	intend	to	create	two	views:	the	summary	view	and	the	comparison	view.	

• Summary	view.		The	purpose	of	the	summary	view	is	to	provide	a	high-level	representation	of	a	
thread’s	execution.		As	mentioned	previously,	we	will	use	the	SEQUITUR	algorithm	to	summarize	
the	execution.		
Suppose	we	have	a	thread	which	executed	the	following	events:	
	
1) Entered	function	foo	
2) Exited	function	foo	
3) Entered	function	bar	
4) Exited	function	bar	
5) Attempted	to	acquire	a	lock	64	times	
6) Entered	function	foo	
7) Exited	function	foo	
8) Entered	function	bar	
9) Exited	function	bar	

After	removing	the	meaningless	production	rules,	we	will	end	up	with	the	following	summary	of	
the	execution:	

0	->	1,	2,	1	

1	->	Entering	function	foo,	Exiting	function	foo,	Entering	function	bar,	Exiting	function	bar	

2	->	Entered	and	exited	lock	function	64	times	



Figure	6	below	shows	one	possibility	for	how	the	visualization	tool	could	show	this	execution:

	

Figure	6:	Summary	view	

Because	production	rule	0	represents	the	complete	trace,	the	summary	view	will	essentially	be	
displaying	a	representation	of	rule	0.		In	our	example	above,	production	rule	0	consists	of	three	
rule	instances:	2	instances	of	rule	1	and	1	instance	of	rule	2.		As	suggested	by	Walkinshaw	et	al,	
we	will	refer	to	these	rule	instances	as	execution	“phases”.	

Execution	phases	are	represented	in	the	summary	view	as	box	marks.		Rather	than	labelling	
each	execution	phase	by	its	production	rule	number,	the	visualization	tool	will	label	each	phase	



by	the	function	events	it	contains.		To	save	on	horizontal	space,	each	label	representing	a	
function	entry	will	begin	with	a	+	symbol	while	each	label	representing	a	function	exit	will	begin	
with	a	-	symbol.		By	using	the	function	events	as	labels,	users	will	immediately	be	able	to	acquire	
a	general	sense	of	what	the	thread	is	doing	within	each	phase.			

The	vertical	spatial	positioning	channel	will	be	used	to	encode	the	order	in	which	the	phases	are	
instantiated	in	production	rule	0.		The	vertical	length	channel	will	be	used	to	encode	the	number	
of	execution	events	within	each	phase.		In	Figure	6,	the	phase	representing	the	moment	when	
the	thread	repeatedly	attempted	to	acquire	the	lock	is	much	longer	than	the	other	two	phases.		
However,	to	save	on	screen	real	estate,	the	vertical	length	of	each	phase	will	not	be	directly	
proportional	to	the	number	of	execution	events	it	contains.		Instead,	some	method	of	
logarithmic	scaling	will	determine	the	vertical	length	of	each	phase.			

Occasionally,	a	phase	will	not	be	long	enough	to	label	it	with	all	of	the	execution	events	it	
contains.		An	ellipsis	at	the	bottom	of	each	phase	will	indicate	to	users	that	a	phase	contains	
more	events	than	are	shown	in	its	labels.		If	users	wish	to	know	all	of	the	function	events	within	
a	phase,	they	can	mouse	over	the	phase	and	receive	more	detailed	information.			

Kindly	note	that	the	visual	encoding	ideas	for	the	summary	view	are	extremely	preliminary.		One	
of	the	project	milestones	will	be	to	finalize	the	visual	encoding	techniques	used	by	the	summary	
view.	

• Comparison	view.		The	purpose	of	the	comparison	view	is	to	help	users	compare	the	differences	
between	two	execution	traces	or	even	two	different	parts	of	the	same	trace.		To	compare	
execution	behavior,	we	would	like	to	adopt	the	analysis	techniques	used	by	scientists	when	
comparing	two	DNA	strands.		Like	our	execution	traces,	DNA	strands	are	ordinal	sequences	of	
items.		Therefore,	we	should	be	able	to	compare	our	execution	traces	in	the	same	way	scientists	
compare	DNA.	
Scientists	use	the	concept	of	“conservation”	to	determine	how	similar	multiple	DNA	strands	are.		
Figure	7	shows	how	the	UCSC	Genome	Browser	[5]	uses	conservation	to	compare	different	
animal	genes	to	a	human	gene.			
	

	

Figure	7:	Conservation	between	various	animal	genes	and	a	human	gene	

	
The	gene	of	each	animal	is	encoded	with	a	line	mark.		The	thick	portions	of	the	line	encode	the	
parts	of	the	animal	gene	which	match	with	the	human	gene.		We	can	see	the	gene	of	a	rhesus	
monkey	has	high	conservation	with	the	human	gene.		However,	the	zebrafish	which	is	separated	
from	humans	by	hundreds	of	millions	of	years	of	human	evolution,	have	very	low	conservation.					
	
The	UCSC	Genome	Browser	uses	conservation	to	provide	a	coarse	grained	view	of	how	similar	
different	genes	are.		If	we	wish	to	have	a	fine	grained	view	of	the	similarities,	we	can	use	the	



Needleman-Wunsch	algorithm.		Scientists	use	this	algorithm	to	align	two	DNA	strands	together,	
as	demonstrated	below	in	Figure	8	below:	

	

Figure	8:	Aligning	nucleotide	sequences	

Scenario	of	Use	

Jim	is	a	computer	engineer	who	wants	to	improve	the	performance	of	WiredTiger.		He	instruments	
WiredTiger	with	DINAMITE	and	studies	the	resulting	execution	traces.		He	notices	that	thread	23	took	52	
ms	to	execute	the	function	__cursor_row_search	while	thread	27	took	only	3	ms	to	execute	the	same	
function.		He	filters	out	all	events	from	the	execution	traces	which	were	not	executed	by	thread	23	or	27	
and	did	not	take	place	during	the	two	__cursor_row_search	calls.		Then	he	loads	the	filtered	traces	into	
ThreadViewer.	
	

	

Figure	9:	Comparing	and	viewing	thread	23	and	thread	27	

	
Jim	begins	his	investigation	by	using	the	compare	view	to	compare	the	behavior	between	the	two	
threads	(Figure	9).		He	sees	that	the	threads	behaved	differently	when	executing	the	same	function.			
Jim	decides	to	switch	to	the	summary	view	and	examine	how	thread	23	behaved	when	performing	
__cursor_row_search.		He	sees	that	thread	23	was	building	an	internal	memory	page	after	reading	a	
page	from	disk.		He	then	uses	the	summary	view	to	examine	how	thread	27	behaved	when	executing	



__cursor_row_search.		He	sees	that	thread	27	was	building	a	leaf	memory	page	after	reading	a	page	
from	disk,	not	an	internal	memory	page.	

	

Figure	10:	Comparing	the	behavior	of	threads	23	and	17	

	
Jim	goes	through	his	execution	logs	once	more	and	notices	that	thread	17	also	took	a	very	long	time	to	
execute	__cursor_row_search.		He	decides	to	use	the	comparison	view	to	compare	the	behavior	of	
threads	23	and	17	during	their	respective	outlier	calls	to	__cursor_row_search	(Figure	10).			
He	sees	t	
	hat	the	two	threads	behaved	almost	identically.	
Jim	now	knows	that	the	duration	of	a	call	to	__cursor_row_search	depends	on	what	type	of	memory	
page	is	being	built	after	the	page	is	read	from	disk.				
	
Proposed	Implementation	Approach	
We	created	TimeSquared	using	JavaScript	and	D3.js.		Because	we	intend	for	ThreadViewer	and	
TimeSquared	to	be	used	together,	we	will	also	create	ThreadViewer	using	JavaScript	and	D3.js.		The	long	
term	goal	beyond	the	scope	of	this	project	will	be	to	merge	the	ThreadViewer	and	TimeSquared	code	
together	to	form	one	truly	cohesive	performance	debugging	tool.		ThreadViewer	will	run	on	a	web	
browser	and	be	hosted	on	a	bitbucket	account.	
	
Project	Milestones	
Mar	17	–	Finalize	my	visual	encoding	ideas	for	the	summary	view	and	comparison	view.			
Mar	21	–	First	peer	project	review.			



Mar	31	–	Interim	writeup	due.		By	this	time,	I	plan	to	be	well	on	my	way	towards	finishing	a	basic	
implementation	of	the	summary	view.	
April	4	–	Second	peer	project	review.		By	this	time,	I	plan	to	have	completed	a	basic	implementation	of	
the	summary	view.	
April	17	–	Complete	the	summary	view	and	a	basic	implementation	of	the	comparison	view.		Prepare	for	
the	final	presentation	and	begin	writing	the	final	paper.	
April	25	–	Final	Presentation.		By	this	time,	I	plan	to	have	completed	the	comparison	view.	
April	28	–	Final	paper	due	
	
Previous	Work	
Visualization	of	execution	traces	is	a	well-researched	field.		Most	approaches	for	serial	trace	
visualization	involve	assigning	one	of	the	axes	the	time	variable	while	the	other	axis	is	used	to	represent	
different	processes,	classes,	instructions,	or	methods	[6].		TimeSquared	also	uses	one	of	the	axes	to	
represent	time	and	the	other	axis	to	represent	the	behavior	of	different	threads.		However,	tools	which	
adopt	this	visualization	approach	can	only	visualize	fractions	of	the	total	program	execution	duration.			
Many	visualization	tools	provide	an	overview	of	the	execution	trace	and	allow	users	to	zoom	in	on	parts	
of	the	trace	for	more	details.		Extravis	is	a	tool	which	uses	a	“massive	sequence	view”	to	show	an	
overview	of	an	execution	and	a	“circular	view”	to	show	the	interactions	between	the	components	of	a	
program	[7].		Synctrace	is	another	tool	which	draws	a	serial	timeline	overview	of	a	selected	thread	and	
shows	the	call	stacks	of	different	threads	in	the	context	view	[8].		However,	this	approach	of	“Overview	
First,	Zoom	and	Filter,	Details	on	Demand”	is	not	scalable	for	large	traces.	
Rather	than	simply	attempting	to	visualize	entire	traces,	researchers	are	developing	techniques	to	
“localize”	root	causes	of	performance	issues	in	computer	systems.		For	instance,	Sambasivan	et	al	
focused	on	comparing	two	request-flow	traces	to	highlight	changes	in	system	behavior	[9];	by	highlight	
these	changes	localizes	the	source	of	performance	issues	and	guides	developer	effort.				

References	

1) A	Survey	on	Performance	Tuning	By	Plumbr,	https://plumbr.eu/blog/performance-blog/	
java-performance-tuning-survey-results-part-i.	

2) Svetozar	Miucin,	Conor	Brady	and	Alexandra	Fedorova,	End-to-end	Memory	Behavior	Profiling	
with	DINAMITE,	in	24th	ACM	SIGSOFT	International	Symposium	on	the	Foundations	of	Software	
Engineering	(FSE),	2016. 

3) Walkinshaw,	Neil,	Sheeva	Afshan,	and	Phil	McMinn,	Using	Compression	Algorithms	to	Support	
the	Comprehension	of	Program	Traces,	in	Proceedings	of	the	Eighth	International	Workshop	on	
Dynamic	Analysis.	ACM,	2010.	

4) D3	–	Data	Driven	Documents,	https://d3js.org/.	
5) UCSC	Genome	Browser,	https://genome.ucsc.edu/	
6) Katherine	E.	Isaacs,	Alfredo	Giménez,	Todd	Gamblin,	and	Abhinav	Bhatele,	State	of	the	Art	of	

Performance	Visualization,	in	EuroVis,	2014	
7) Holten,	Danny,	Bas	Cornelissen,	and	Jarke	J.	Van	Wijk,	Trace	Visualization	Using	Hierarchical	

Edge	Bundles	and	Massive	Sequence	Views,	in	IEEE	International	Workshop	on	Visualizing	
Software	for	Understanding	and	Analysis	(VISSOFT),	2007.	



8) Karran,	Benjamin,	Jonas	Trumper,	and	Jurgen	Dollner,	Synctrace:	Visual	Thread-interplay	
Analysis,	in	IEEE	International	Workshop	on	Visualizing	Software	for	Understanding	and	Analysis	
(VISSOFT),	2013.	

9) Raja	R.	Sambasivan,	Alice	X.	Zheng,	Michael	De	Rosa,	Elie	Krevat,	Spencer	Whitman,	Michael	
Stroucken,	William	Wang,	Lianghong	Xu,	Gregory	R.	Ganger,	Diagnosing	Performance	Changes	
by	Comparing	Request	Flows,	in	NSDI,	2011.	
	


